IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Determination of selected phenolics, carotenoids and norisoprenoids in Riesling grapes after treatment against sunburn damage

Determination of selected phenolics, carotenoids and norisoprenoids in Riesling grapes after treatment against sunburn damage

Abstract

Riesling represents the most widely cultivated grape variety in Germany and is therefore of particular economic interest. During recent years an increase in the petrol-note as well as in undesirable bitter and adstringent notes has been reported. These changes are most likely linked to increasing temperature and sunlight exposure of grapes due to climate changes.
The “petrol note” is caused by the formation of the C13-norisoprenoid 1,1,6-trimethyl-1,2-dihydronaphthalin (TDN), which originates from acid-labile precursors formed by the carotenoid degradation in the grape. The negative orosensory changes are thougt to be related to phenolic components in wine since some polyphenols have already been described as astringent and/or bitter. The grape responds to increased sunlight exposure by storing polyphenols, especially flavonoids, in the berry skin. The question whether viticultural treatments such as applications of particle-film forming products like kaolin and calcium carbonate preparations to reflect sun light and to mitigate sunburn damage on grapes and thus minimize organoleptic defects as well as off-flavors in resulting wines has not yet been sufficiently answered. 
In this study, we investigated the influence of defoliation at different degree in conjunction with the application of particle suspension to protect against sunburn damage in respect to selected carotenoids, C13-norisoprenoids and polyphenols in grapes. For comparability and possible correlation of results, qualitative and quantitative determination of C13-norisoprenoid and polyphenols was performed from the same sample extract. The carotenoid profile was analyzed by UHPLC-DAD and HPLC-APCI-MSn. Quantification was performed by UHPLC-DAD as lutein equivalents using an internal standard (β-apo-8-‘carotenal). Quantification of C13-norisoprenoids was conducted via SIVA with deuterated standards by HS-SPME-GC-MS/MS. The qualitative and quantitative analysis of polyphenols was done by HPLC-ESI-MSn and UHPLC-DAD by means of external calibration with representative substances for respective substance classes. The applied treatments showed effects on the qualitative and quantitative profiles of the analyzed constituents in grapes. While increased sunlight exposure induced the degradation of carotenoids, the mean content of C13-norisoprenoids and polyphenols increased.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Maedge Inga1, Goek Recep1, Behne Sina1, Winterhalter Peter1, Waber Jonas2, Bogs Jochen2, Szmania Caterina2, Vestner Jochen2 and Fischer Ulrich2

1Institute of Food Chemistry, Technische Universität Braunschweig
2Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology, Neustadt an der Weinstraße 67435, Germany

Contact the author

Keywords

Riesling grapes, sunlight exposure, carotenoids, norisoprenoids, phenolics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Vine plant material: situation and prospect

vine plant material is one of the major factors of terroir. The vine numbers over 1,000 species, of which the main cultivated species, Vitis vinifera, includes some 6,000 varieties. For the last forty years, selection has been carried out on these, mainly through clonal selection. However, today, only 300 varieties present one or more clones. A dozen varieties are considered as international. The extreme requirements of selection, in terms of diseases, provoke the elimination of the majority of selected plants. This approach to selection is not thorough because it focuses mainly on elimination of virosis and phytoplasma diseases.

Local ancient grapevine cultivars to face future viticulture

Among the different strategies to cope with the negative impacts of climate change on viticulture, the exploitation of genetic diversity is one of the most promising to adapt to new conditions and maintain wine production and quality. One of the biggest concerns in the context of climate change is to improve water use efficiency (WUE). In this way, the use of genotypes that present a better response to drought and high WUE is a key issue. In this work, physiological performance analysis was conducted to compare the water deficit stress (WDS) responses of local and widespread grapevines cultivars. Leaf gas exchange, water use efficiency (WUE) at different levels (leaf and long-term WUE (∆13C)), leaf osmotic adjustment and other water relations parameters were determined in plants under well-watered and WDS conditions alongside assessment of the levels of foliar hormones concentrations. Results denote that local cultivars displayed better physiological performance under WDS as compared to the widely-distributed ones. he results corroborate the hypothesis that better stomatal control allows increasing leaf WUE under drought as occurred in the local Callet cv.; but the minority local cultivar Escursac cv. showed high WUE under both treatments. In this case, high WUE can be related to maintaining higher photosynthetic activity under drought. The different mechanisms underlying the better performance under WDS and high WUE of minority local cultivars are discussed.

Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Although some wine production processes still rely on post-production evaluation and off-site laboratory analysis, the new winemaking industry is aware of a need for a better knowledge of the process to improve the properties of the final product. Thus, more and more wineries are interested in incorporating quality-by-design (QbD) strategies instead of postproduction testing because of the possibility to early detect deviations in fermentation or any other wine process. This would allow to detect unwanted situations and eventually to ‘readjust’ the process, thus minimizing rejects.

Untargeted metabolomics reveals the impact of cork oxygen transfer on non-volatile compounds during red wine ageing

During red wine aging, numerous chemical reactions occur, contributing to the modification and enhancement of the wine sensory parameters over time [1].

WINE CONSUMER TRADE-OFF BETWEEN ORGANOLEPTIC CHARACTERISTICS AND SUSTAINABLE CLAIMS. AN EXPERIMENT ON RED WINES FROM BORDEAUX REGION

In economics, the perception of wine quality is not limited to sensorial characteristics: an indication of the region of production significantly affects the perception of quality and consumers’ WTP ([1]; [2]). However, [3] or more recently [4] show that even if a wine has an organic label, the taste of wine remains the predominant criterion in consumer preferences. The contribution of our experiment is to evaluate the impact of responsible attributes (organic label, Non Added Sulfites, HVE certification) on the appreciation of several red wines on the market. More than 280 consumers participated to the present study and they perform 25 tastings divided into 5 different sessions. 20 different red wines from Bordeaux Area are tasted.