IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Determination of selected phenolics, carotenoids and norisoprenoids in Riesling grapes after treatment against sunburn damage

Determination of selected phenolics, carotenoids and norisoprenoids in Riesling grapes after treatment against sunburn damage

Abstract

Riesling represents the most widely cultivated grape variety in Germany and is therefore of particular economic interest. During recent years an increase in the petrol-note as well as in undesirable bitter and adstringent notes has been reported. These changes are most likely linked to increasing temperature and sunlight exposure of grapes due to climate changes.
The “petrol note” is caused by the formation of the C13-norisoprenoid 1,1,6-trimethyl-1,2-dihydronaphthalin (TDN), which originates from acid-labile precursors formed by the carotenoid degradation in the grape. The negative orosensory changes are thougt to be related to phenolic components in wine since some polyphenols have already been described as astringent and/or bitter. The grape responds to increased sunlight exposure by storing polyphenols, especially flavonoids, in the berry skin. The question whether viticultural treatments such as applications of particle-film forming products like kaolin and calcium carbonate preparations to reflect sun light and to mitigate sunburn damage on grapes and thus minimize organoleptic defects as well as off-flavors in resulting wines has not yet been sufficiently answered. 
In this study, we investigated the influence of defoliation at different degree in conjunction with the application of particle suspension to protect against sunburn damage in respect to selected carotenoids, C13-norisoprenoids and polyphenols in grapes. For comparability and possible correlation of results, qualitative and quantitative determination of C13-norisoprenoid and polyphenols was performed from the same sample extract. The carotenoid profile was analyzed by UHPLC-DAD and HPLC-APCI-MSn. Quantification was performed by UHPLC-DAD as lutein equivalents using an internal standard (β-apo-8-‘carotenal). Quantification of C13-norisoprenoids was conducted via SIVA with deuterated standards by HS-SPME-GC-MS/MS. The qualitative and quantitative analysis of polyphenols was done by HPLC-ESI-MSn and UHPLC-DAD by means of external calibration with representative substances for respective substance classes. The applied treatments showed effects on the qualitative and quantitative profiles of the analyzed constituents in grapes. While increased sunlight exposure induced the degradation of carotenoids, the mean content of C13-norisoprenoids and polyphenols increased.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Maedge Inga1, Goek Recep1, Behne Sina1, Winterhalter Peter1, Waber Jonas2, Bogs Jochen2, Szmania Caterina2, Vestner Jochen2 and Fischer Ulrich2

1Institute of Food Chemistry, Technische Universität Braunschweig
2Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology, Neustadt an der Weinstraße 67435, Germany

Contact the author

Keywords

Riesling grapes, sunlight exposure, carotenoids, norisoprenoids, phenolics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].

Adapting Portuguese vineyards to climate change: impact of different irrigation regimes on phenolic composition

Climate change has led to increased extreme weather events, such as severe droughts and intense rainfall, with regions like Alentejo and Algarve in Portugal, being particularly affected.

Climate, Viticulture, and Wine … my how things have changed!

The planet is warmer than at any time in our recorded past and increasing greenhouse emissions and persistence in the climate system means that continued warming is highly likely. Climate change has already altered the basic framework of growing grapes for wine production worldwide and will likely continue to do so for years to come. The wine sector can continue to play an important role in leading the agricultural sector in addressing climate change. From developing on…

The effects of soil health management practices on soil organic carbon persistence and accrual in vineyards

Context and purpose of the study. Climate change is already threatening California vineyards, as they grapple with increasing extreme weather events and drier growing seasons.

Impact of type of winemaking vessel on the chemical composition and sensory attributes of Sauvignon blanc wines

In this video recording of the IVES science meeting 2024, Mariona H Gil i Cortiella (Universidad Autónoma de Chile, Santiago de Chile, Chile) speaks about the impact of type of winemaking vessel on the chemical composition and sensory attributes of Sauvignon blanc wines. This presentation is based on an original article accessible for free on IVES Technical Reviews.