IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Determination of selected phenolics, carotenoids and norisoprenoids in Riesling grapes after treatment against sunburn damage

Determination of selected phenolics, carotenoids and norisoprenoids in Riesling grapes after treatment against sunburn damage

Abstract

Riesling represents the most widely cultivated grape variety in Germany and is therefore of particular economic interest. During recent years an increase in the petrol-note as well as in undesirable bitter and adstringent notes has been reported. These changes are most likely linked to increasing temperature and sunlight exposure of grapes due to climate changes.
The “petrol note” is caused by the formation of the C13-norisoprenoid 1,1,6-trimethyl-1,2-dihydronaphthalin (TDN), which originates from acid-labile precursors formed by the carotenoid degradation in the grape. The negative orosensory changes are thougt to be related to phenolic components in wine since some polyphenols have already been described as astringent and/or bitter. The grape responds to increased sunlight exposure by storing polyphenols, especially flavonoids, in the berry skin. The question whether viticultural treatments such as applications of particle-film forming products like kaolin and calcium carbonate preparations to reflect sun light and to mitigate sunburn damage on grapes and thus minimize organoleptic defects as well as off-flavors in resulting wines has not yet been sufficiently answered. 
In this study, we investigated the influence of defoliation at different degree in conjunction with the application of particle suspension to protect against sunburn damage in respect to selected carotenoids, C13-norisoprenoids and polyphenols in grapes. For comparability and possible correlation of results, qualitative and quantitative determination of C13-norisoprenoid and polyphenols was performed from the same sample extract. The carotenoid profile was analyzed by UHPLC-DAD and HPLC-APCI-MSn. Quantification was performed by UHPLC-DAD as lutein equivalents using an internal standard (β-apo-8-‘carotenal). Quantification of C13-norisoprenoids was conducted via SIVA with deuterated standards by HS-SPME-GC-MS/MS. The qualitative and quantitative analysis of polyphenols was done by HPLC-ESI-MSn and UHPLC-DAD by means of external calibration with representative substances for respective substance classes. The applied treatments showed effects on the qualitative and quantitative profiles of the analyzed constituents in grapes. While increased sunlight exposure induced the degradation of carotenoids, the mean content of C13-norisoprenoids and polyphenols increased.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Maedge Inga1, Goek Recep1, Behne Sina1, Winterhalter Peter1, Waber Jonas2, Bogs Jochen2, Szmania Caterina2, Vestner Jochen2 and Fischer Ulrich2

1Institute of Food Chemistry, Technische Universität Braunschweig
2Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology, Neustadt an der Weinstraße 67435, Germany

Contact the author

Keywords

Riesling grapes, sunlight exposure, carotenoids, norisoprenoids, phenolics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Evaluation of the hydroxyethyl radical formation kinetic and Strecker aldehydes distribution for assessing the oxidative susceptibility of Chardonnay wines

Over the last decade, much attention has been paid on the oxidative susceptibility of white wines, given its key role in determining their ageing potential.

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest.

A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

A Visual Information eNvironment for Effective agricultural management and Sustainability (VINES) is under development, which can provide significant competitive advantages to winegrowers by sustaining their appellation-specific grape and wine qualities and yields while measurably conserving water resources.

On sample preparation methods for fermentative beverage VOCs profiling by GCxGC-TOFMS

Study the influence of sample preparation methods on the volatile organic compounds (VOCs) profiling for fermentative beverages by GCxGC-TOFMS analysis. METHODS: Five common sample preparation methods were tested on pooled red wine, white wine, cider, and beer. Studied methods were DHS, Liquid-liquid extraction, mSBSE, SPE and SPME. VOCs were analyzed by GCxGC-TOFMS followed by data analysis with ChromaTOF. RESULTS: The volatile organic compounds (VOCs) profiling results were very dependent on the sample preparation methods.

Deciphering grapevine trunk early molecular responses to P. minimum and P. chlamydospora in the presence of a commercial biocontrol agent (Trichoderma atroviride, Vintec®)

Esca, one of the main grapevine trunk diseases, is a complex and poorly understood disease. Phaeoacremonium minimum and Phaeomoniella chlamydospora, two of the main pathogens associated to this disease, are thought to be responsible for the first trunk infections. Little is known concerning grapevine trunk defenses during pathogen infection.