IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of the type of tanks employed for winemaking on red wine phenolic composition

Influence of the type of tanks employed for winemaking on red wine phenolic composition

Abstract

The grape maturation process is being affected by the consequences of global climate change and, as a result, there is a gap at harvest time between the technological maturity of grapes (mostly the concentration of sugar and acids) and its phenolic quality. Due to this gap, the wines elaborated using those grapes show a non-adequate phenolic composition, which results in defects on its color and astringency characteristics. Astringency is mainly related to the salivary protein precipitation because of the interaction not only with wine flavanols but also with other wine phenolics, such as flavonols or different pigments. Moreover, the different flavanol structures (catechins, gallocatechins, galloylated derivatives) show different abilities for interacting with salivary proteins and, therefore, they show different astringent characteristics (Ferrer-Gallego et al, 2015). Likewise, color is mainly related to anthocyanin composition of wines but the presence or other phenolic compounds, namely flavonols, flavanols or phenolic acids, which can act as copigments, also exert an important influence on that organoleptic property. Thus, different strategies, both viticultural and oenological, could be addressed looking for the modulation of phenolic composition and, consequently, the improvement of the organoleptic properties of wine, such as the modulation of astringency and the stabilization of wine color (García-Estévez et al., 2017).This work evaluates the influence of different type of tanks built with different materials, i.e. stainless steel tanks, oak wood barrels or earthenware vats, on the phenolic composition of wines at different times of winemaking and wine maturation. To do this, the alcoholic fermentation was performed using stainless steel tanks or earthenware vats, whereas the malolactic fermentation was carried out using oak wood barrels of different sizes or earthenware vats. The detailed anthocyanic, flavanolic and flavonolic composition of wines were determined after both fermentation steps by using HPLC-DAD-MS. Results show that wines that performed the alcoholic fermentation in stainless steel tanks have higher levels of flavanols and anthocyanins but lower levels of flavonols than those wines fermented in earthenware vats. Moreover, wines elaborate in stainless steel tanks that performed the malolactic fermentation in oak barrels or in earthenware vats do not show significant differences on their phenolic composition excepting for the prodelphinidins proportion in their flavanol composition. However, when earthenware vats were used just for malolactic fermentation, after alcoholic fermentation in stainless steel tanks, wines showed higher levels of phenolic compounds than when both fermentation processes are carried out in the earthenware vats, thus pointing out that boththe type of tank and the time when it is employed are important for the phenolic composition of wines.

References

Ferrer-Gallego et al., 2015. Chem Senses, 40, 381-390.
García-Estévez et al., 2017. OENO One, 51, 237-249.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Torres-Rochera Bárbara1, García-Estévez Ignacio1, Del Rey-Rivero Rebeca1, Ferreras-Charro Rebeca1, Alcalde-Eon Cristina1 and Esribano-Bailón Mará Teresa1

1Department of Analytical Chemistry, Nutrition and Food Sciences, Universidad de Salamanca

Contact the author

Keywords

phenolic compounds, oak barrels, earthenware vats, HPLC-DAD-MS, red wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Aromatic maturity is a cornerstone of terroir expression in red wine

Harvesting grapes at adequate maturity is key to the production of high-quality red wines. Enologists and wine makers define several types of maturity, including technical maturity, phenolic maturity and aromatic maturity. Technical maturity and phenolic maturity are relatively well documented in the scientific literature, while articles on aromatic maturity are scarcer. This is surprising, because aromatic maturity is, without a doubt, the most important of the three in determining wine quality and typicity (including terroir expression). Optimal terroir expression can be obtained when the different types of maturity are reached at the same time, or within a short time frame. This is more likely to occur when the ripening takes place under mild temperatures, neither too cool, nor too hot. Aromatic expression in wine can be driven, from low to high maturity, by green, herbal, fresh fruit, ripe fruit, jammy fruit, candied fruit or cooked fruit aromas. Green and cooked fruit aromas are not desirable in red wines, while the levels of other aromatic compounds contribute to the typicity of the wine in relation to its origin. Wines produced in cool climates, or on cool soils in temperate climates, are likely to express herbal or fresh fruit aromas; while wines produced under warm climates, or on warm soils in temperate climates, may express ripe fruit, jammy fruit or candied fruit aromas. Growers can optimize terroir expression through their choice of grapevine variety. Early ripening varieties perform better in cool climates and late ripening varieties in warm climates. Additionally, maturity can be advanced or delayed by different canopy management practices or training systems.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

South American Creole grapevines: new varieties identified in the Caravelí Valley (Peru) and their aromatic profile

The valley of Caravelí (Peru) received the first vine plants in colonial times and the tradition of cultivation is maintained thanks to its terroir and artisanal techniques.

Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Climate change critically challenges viticulture. Among other threats, extreme and increasingly frequent heatwaves cause irreversible burns on leaves and bunches. A series of observations and experiments was conducted to better understand how leaf burns originate and whether genetics or management practices can mitigate them. In 2019, a panel of 279 potted cultivars of Vitis vinifera L. grown outdoors suffered a heat peak and a genetic origin of leaf burn variability was demonstrated. To deeper explore this variability, fourteen cultivars were selected for their contrasting responses to high temperatures, and detached leaves were submitted to a controlled increase in temperature up to 50 °C in a growth chamber.

Organic and biodynamic sustainable productions and effect on eligibility and peculiarity of a typical wine

The wine industry is currently shifting toward more sustainable production systems. There are many reasons for this as the interest of people over climate change and, consequently the wine consumer’s choice toward organic and biodynamic, reduced carbon-footprint, vegan and other environmentally friendly wines. While the viticultural effects of biodynamic and organic practices on wine grapes have been investigated, there is a lack in literature on the general effect on the final quality of wine