terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

Abstract

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

The understanding of perceptual interactions has been delayed to a large extent by the common misunderstanding that odorants and odors are the same thing. Odorants are, however, chemical entities -volatile molecules- able to impact the olfactory receptors, while odors are the sensory experiences encoded by odorants. A significant part of the code is nowadays known, and can be explained in terms of odor x odor interactions. These interactions can be competitive, cooperative, destructive and creative. Cooperative interactions are relevant because give rise to the concept of odor vector, establishing a key link between the chemical and sensory spaces. Different studies have shown that the nearly 80 main wine odorants form 35 different wine aroma vectors, classified into 10-different aroma categories. Yet, aroma vectors can further interact by creative interactions to form new aroma nuances. Some of these interactions have been identified and will be shown. Furthermore, destructive interactions can also take a major role in wine, since ethanol and the higher alcohols are strong aroma suppressors. These suppression effects are of the highest interest in wine dealcoholization.

Finally, it will be shown that physicochemical interactions with different matrix components are enough to change the volatilities of some odorants by factors between 2 and 4, more than enough to have sensory relevance.

Acknowledgement. Most of this research has been funded by the Spanish government (projects MYCIN PID2021-126031OB; MINECO AGL2017-87373)

DOI:

Publication date: October 20, 2023

Issue: ICGWS 2023

Type: Article

Authors

Vicente Ferreira

Laboratory for Aroma Analysis and Enology (LAAE), University of Zaragoza, Spain

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Evaluation of phenology, agronomic and oenological quality in minority wine varieties in Madrid as a strategy for adaptation to climate change

The main phenological stages (budburst, flowering, veraison, and ripeness) and the fruit composition of 34 Spanish minority varieties were studied to determine their cultivation potential and help winegrowers adapt their production systems to climate change conditions. In total, 4 control cultivars, and 30 minority varieties from central Spain were studied during a period of 3 campaigns, in the ampelographic collection “El Encín”, in Alcalá de Henares, Madrid. Agronomic and oenological characteristics such as yield, and total soluble solids concentration have been monitored.

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.