IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

Abstract

Varietal thiols 3-sulfanylhexan-1-ol (3SH), 3-sulfanylhexyl acetate (3SHA) and 4-methyl-4-sulfanylpentan-2-one (4SMP) are essential for fruity aromas of Sauvignon Blanc wines. The concentration of varietal thiols in wines was thought to be related to the concentration of their precursors in grapes, however only a small proportion of precursors are released to varietal thiols during fermentation. New findings suggested that specific grape juice metabolites could significantly impact on the development of three major varietal thiols and other aroma compounds of Sauvignon Blanc wines. Among them, elemental sulfur and hydrogen sulfide indicated a positive role on the formation of varietal thiols during vinification (Araujo et al., 2016; Harsch et al., 2013). This research aimed to investigate the addition of different sources of sulfur in grape juice on formation of 3SH, 3SHA, 4SMP and benzene methanethiol (BM) in Sauvignon Blanc and Istrian Malvasia wines. Istrian Malvasia (Vitis vinifera L.) is a local grapevine variety which sometimes aromatically resemble on Sauvignon Blanc.Pressed grape juice was settled overnight and sampled from tank for microfermentations. Additions of different sulfur compounds in 700 mL of juice were performed just before yeast inoculation in four replicates each: (1) control – no addition, (2) addition of reduced glutathione (GSH) (20 and 50 mg/L), (3) addition of methionine (10 and 20 mg/L), (4) addition of cysteine (20 and 40 mg/L), (5) addition of elemental sulfur (5 and 10 mg/L) and (6) addition of  sodium hydrosulfide hydrate (1 and 10 mg/L). Fermentations were performed with Saccharomyces cerevisae (X5, Laffort, France) in 750 mL dark glass bottles at 18-20 °C. After fermentation, 50 mg/L SO2 was added, wines were settled, racked, and stored at -20 °C until analyses. Varietal thiols were analysed by GC-MS/MS (Schimadzu, TQ8050) using the modified method as described (Šuklje et al., 2013).Sauvignon Blanc wines with the addition of 10 mg/L NaSH·xH2O (which releases hydrogen sulfide) had significant higher concentration of 3SH and 3SHA compared to control and other treatments. Istrian Malvasia wines with the addition of 10 mg/L NaSH·xH2O had significant higher concentrations of 3SH but there were no significant differences in 3SHA.  The addition of elemental sulfur increased 3SH and 3SHA in both varieties, however not significantly. Addition of sulphur compounds in our study had no effect on concentration of 4MMP and BM in Sauvignon Blanc or Istrian Malvasia wines. On the other hand, the additions of GSH and cysteine resulted in significantly lower formation of 3SH and 3SHA in Sauvignon Blanc wines in comparison to control and other additions. The latter finding is compliant with the study on model wines by Alegre et al. (2019).Modifying sulfur source composition in grape juice showed some significant changes in concentration of 3SH in both Sauvignon Blanc and Istrian Malvasia wines.

References

Araujo D. L., Vannevel S., Buica A., Callerot S., Fedrizzi B., Kilmartin A. P., du Toit J. W. 2016. Indications of the prominent role of elemental sulfur in the formation of the varietal thiol 3-mercaptohexanol in Sauvignon blanc wine, Food Research International, 98, 79-86.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Vanzo Andreja1, Alenka Mihelčič1, Katja Šuklje1, Klemen Lisjak1

1 Agricultural Institute of Slovenia

Contact the author

Keywords

sulfur compounds, grape juice, varietal thiols, Sauvignon Blanc, Istrian Malvasia

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

ePROSECCO: Historical, cultural, applied philosophy analysis and process, product and certification innovation, for the “sustainable original progress and promotion 4.1c” of a historic and famous territory and wine

According to the algorithm “A step back towards the future 4.1C”, (Cargnello,1986a, 1987d, 1988a.b, 1991, 1993, 1994b, 1995, 1999a.e, 2000b, 2007c, 2008a, 2009d, 2013; and according to the principles of “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” of GiESCO (Carbonneau and Cargnello, 2003 2015, 2017), the historical, applied philosophy and productive analysis connected to the innovations and to the “Certification of the Universal Holistic MetaEthical Sustainability 4.1C” “indexed new global production model 4.1C” has always been fundamental, especially for the “Prosecco Territory” and for the “Prosecco Wine” to design and implement their synergistic future “Sustainable and Certificable 4.1CC” according to the principles of the “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” by the GiESCO (Carbonneau and Cargnello, lc, Cargnello et Carbonneau, 2007, 2018), and of the Conegliano Campus 5.1C. (Cargnello, lc). Nowadays, people think that Prosecco is a wine from the Veneto Region (from Conegliano and Valdobbiadene in particular), while it comes from Friuli‐Venezia Giulia Region (in North Eastern Italy, such as Veneto) more precisely from “Prosecco” in the Municipality of Trieste (TS‐Italy), as documented in 1382 and in 1548, when Pier Andrea Mattioli, described “that ancient wine, which is born in Prosecco”, as a wine with the following characteristics “thin, clear, shiny, golden, odorous and pleasant to taste». In 1888 at the “Wine Fair” of Trieste there were the “Sparkling wine Prosecco” by Giovanni Balanc, by Giuseppe Klampferer and that one by Marino Luxa. In the 19th century, many expressed their appreciation for the “Prosecco” of Trieste. In order to implement intra and extra territorial and cross‐border relations, as well as, the “Certification of: Products, Companies, Territory, Bio‐MétaÉthique District 4.1C” of Prosecco, a series of activities and researches were conducted in 8 companies: 5 in the “Territory of Prosecco” (TS) in which the principles of “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” of GiESCO (Carbonneau and Cargnello, lc) have been successfully applied. In particolar: 1‐ new and original “Sustainable 4.1C global production model” developed also to prevent the problems caused by wild boar, roe deer, and birds while safeguarding their “psychophysical wellness”, as well as the “psychophysical wellness 4.1C” of the macro and micro flora and fauna, of the biodiversity, of the landscape, etc. (Cargnello, lc), 1.2‐ chemical weed control and “Non MetaEthics 4.1C” processing with the total grass growing of the ground without or with mowing, better if it is manual to protect grass, air and soil, 2‐ recovery of “Historic”: land, vineyards, vines, biodiversity, landscapes, productions, products, … , 3‐ production of the famous “Prosekar, also rosé, of Prosecco” and “Prosecco di Prosecco”, according to “A step back towards the future 4.1C” 4‐ to offer a deserved psychophysical well‐being to the “Prosecco Territory” and entrepreneurs.