IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

Abstract

Varietal thiols 3-sulfanylhexan-1-ol (3SH), 3-sulfanylhexyl acetate (3SHA) and 4-methyl-4-sulfanylpentan-2-one (4SMP) are essential for fruity aromas of Sauvignon Blanc wines. The concentration of varietal thiols in wines was thought to be related to the concentration of their precursors in grapes, however only a small proportion of precursors are released to varietal thiols during fermentation. New findings suggested that specific grape juice metabolites could significantly impact on the development of three major varietal thiols and other aroma compounds of Sauvignon Blanc wines. Among them, elemental sulfur and hydrogen sulfide indicated a positive role on the formation of varietal thiols during vinification (Araujo et al., 2016; Harsch et al., 2013). This research aimed to investigate the addition of different sources of sulfur in grape juice on formation of 3SH, 3SHA, 4SMP and benzene methanethiol (BM) in Sauvignon Blanc and Istrian Malvasia wines. Istrian Malvasia (Vitis vinifera L.) is a local grapevine variety which sometimes aromatically resemble on Sauvignon Blanc.Pressed grape juice was settled overnight and sampled from tank for microfermentations. Additions of different sulfur compounds in 700 mL of juice were performed just before yeast inoculation in four replicates each: (1) control – no addition, (2) addition of reduced glutathione (GSH) (20 and 50 mg/L), (3) addition of methionine (10 and 20 mg/L), (4) addition of cysteine (20 and 40 mg/L), (5) addition of elemental sulfur (5 and 10 mg/L) and (6) addition of  sodium hydrosulfide hydrate (1 and 10 mg/L). Fermentations were performed with Saccharomyces cerevisae (X5, Laffort, France) in 750 mL dark glass bottles at 18-20 °C. After fermentation, 50 mg/L SO2 was added, wines were settled, racked, and stored at -20 °C until analyses. Varietal thiols were analysed by GC-MS/MS (Schimadzu, TQ8050) using the modified method as described (Šuklje et al., 2013).Sauvignon Blanc wines with the addition of 10 mg/L NaSH·xH2O (which releases hydrogen sulfide) had significant higher concentration of 3SH and 3SHA compared to control and other treatments. Istrian Malvasia wines with the addition of 10 mg/L NaSH·xH2O had significant higher concentrations of 3SH but there were no significant differences in 3SHA.  The addition of elemental sulfur increased 3SH and 3SHA in both varieties, however not significantly. Addition of sulphur compounds in our study had no effect on concentration of 4MMP and BM in Sauvignon Blanc or Istrian Malvasia wines. On the other hand, the additions of GSH and cysteine resulted in significantly lower formation of 3SH and 3SHA in Sauvignon Blanc wines in comparison to control and other additions. The latter finding is compliant with the study on model wines by Alegre et al. (2019).Modifying sulfur source composition in grape juice showed some significant changes in concentration of 3SH in both Sauvignon Blanc and Istrian Malvasia wines.

References

Araujo D. L., Vannevel S., Buica A., Callerot S., Fedrizzi B., Kilmartin A. P., du Toit J. W. 2016. Indications of the prominent role of elemental sulfur in the formation of the varietal thiol 3-mercaptohexanol in Sauvignon blanc wine, Food Research International, 98, 79-86.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Vanzo Andreja1, Alenka Mihelčič1, Katja Šuklje1, Klemen Lisjak1

1 Agricultural Institute of Slovenia

Contact the author

Keywords

sulfur compounds, grape juice, varietal thiols, Sauvignon Blanc, Istrian Malvasia

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

New methods and technologies to describe the environment in terroir studies

The concept of terroir in viticulture deals with the influence of environmental factors on vine behaviour and grape ripening. Recent advances in technology, in particular computer technology, allow a more in-depth study of the environment. Geomorphology can be studied with digital Elevation Models (DEM). Soils can be surveyed with geophysics.

Addition of Malvasia di Candia Aromatica must and marcs to Golden Ale beer wort to obtain different Italian Grape Ales

Nowadays, the recovery of secondary resources of wine industry is insufficient and the developing of new products and adjuvants from secondary raw materials could become a relevant sector of research. The re-use of byproducts derived from winemaking could improve the sustainability of wine industry and give additional value to other food industries

Conduite en Lys: résultats pendant la formation du système avec le cépage Loureiro dans la région des “Vinhos Verdes”

Dans la région des “Vinhos Verdes” les études sur les systèmes de conduite de la vigne sont très importantes et beaucoup de travaux ont été faits pendant les dernières années. Cet essai

The true cost of the vineyard landscape enhancement. First results in the Venezia biodistrict 

The research is part of the “Ecovinegoals” project, financed by Interreg Adrion funds. It aims to encourage the adoption and dissemination of agroecological practices in intensive wine-growing areas. The study focuses on cost analysis of the wine-growing landscape enhancement in an organic winery in order to provide a useful tool for winemakers to direct their investments in green infrastructures. One of the Italian pilot areas of the Ecovinegoals project is the Venezia Biodistrict, characterized by viticulture in a flat reclamation area of 105,800 hectares.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.