IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

Abstract

Varietal thiols 3-sulfanylhexan-1-ol (3SH), 3-sulfanylhexyl acetate (3SHA) and 4-methyl-4-sulfanylpentan-2-one (4SMP) are essential for fruity aromas of Sauvignon Blanc wines. The concentration of varietal thiols in wines was thought to be related to the concentration of their precursors in grapes, however only a small proportion of precursors are released to varietal thiols during fermentation. New findings suggested that specific grape juice metabolites could significantly impact on the development of three major varietal thiols and other aroma compounds of Sauvignon Blanc wines. Among them, elemental sulfur and hydrogen sulfide indicated a positive role on the formation of varietal thiols during vinification (Araujo et al., 2016; Harsch et al., 2013). This research aimed to investigate the addition of different sources of sulfur in grape juice on formation of 3SH, 3SHA, 4SMP and benzene methanethiol (BM) in Sauvignon Blanc and Istrian Malvasia wines. Istrian Malvasia (Vitis vinifera L.) is a local grapevine variety which sometimes aromatically resemble on Sauvignon Blanc.Pressed grape juice was settled overnight and sampled from tank for microfermentations. Additions of different sulfur compounds in 700 mL of juice were performed just before yeast inoculation in four replicates each: (1) control – no addition, (2) addition of reduced glutathione (GSH) (20 and 50 mg/L), (3) addition of methionine (10 and 20 mg/L), (4) addition of cysteine (20 and 40 mg/L), (5) addition of elemental sulfur (5 and 10 mg/L) and (6) addition of  sodium hydrosulfide hydrate (1 and 10 mg/L). Fermentations were performed with Saccharomyces cerevisae (X5, Laffort, France) in 750 mL dark glass bottles at 18-20 °C. After fermentation, 50 mg/L SO2 was added, wines were settled, racked, and stored at -20 °C until analyses. Varietal thiols were analysed by GC-MS/MS (Schimadzu, TQ8050) using the modified method as described (Šuklje et al., 2013).Sauvignon Blanc wines with the addition of 10 mg/L NaSH·xH2O (which releases hydrogen sulfide) had significant higher concentration of 3SH and 3SHA compared to control and other treatments. Istrian Malvasia wines with the addition of 10 mg/L NaSH·xH2O had significant higher concentrations of 3SH but there were no significant differences in 3SHA.  The addition of elemental sulfur increased 3SH and 3SHA in both varieties, however not significantly. Addition of sulphur compounds in our study had no effect on concentration of 4MMP and BM in Sauvignon Blanc or Istrian Malvasia wines. On the other hand, the additions of GSH and cysteine resulted in significantly lower formation of 3SH and 3SHA in Sauvignon Blanc wines in comparison to control and other additions. The latter finding is compliant with the study on model wines by Alegre et al. (2019).Modifying sulfur source composition in grape juice showed some significant changes in concentration of 3SH in both Sauvignon Blanc and Istrian Malvasia wines.

References

Araujo D. L., Vannevel S., Buica A., Callerot S., Fedrizzi B., Kilmartin A. P., du Toit J. W. 2016. Indications of the prominent role of elemental sulfur in the formation of the varietal thiol 3-mercaptohexanol in Sauvignon blanc wine, Food Research International, 98, 79-86.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Vanzo Andreja1, Alenka Mihelčič1, Katja Šuklje1, Klemen Lisjak1

1 Agricultural Institute of Slovenia

Contact the author

Keywords

sulfur compounds, grape juice, varietal thiols, Sauvignon Blanc, Istrian Malvasia

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effects of the biodynamic preparations 500 and 501 on vine and berry physiology, pedology and the soil microbiome

In the pursuit of increasing sustainability, climate change resiliency and independence of synthetic pesticides in agriculture, the interest of consumers and producers in organic and biodynamic farming is steadily increasing. This is in particular the case for the vitivinicultural industry in Europe, where more and more producers are converting from organic to biodynamic farming. However, clear scientific evidence showing that biodynamic farming improves vine physiology, vine stress resilience, berry or wine quality, or is more sustainable for the environment is still lacking although this issue has been addressed by several research teams worldwide.

Introducing heterogeneity measurements in terroir studies. Application in the região demarcada do douro (n portugal)

Terroir zoning studies have to manage the heterogeneity and complexity of the landscape properties and processes. The varying geology is one of the main landscape properties conditioning the spatial variability of terroirs.

Pruning vine-shoots as a new enological additive to differentiate and improve the quality of wines

The objective of these work was to demonstrate that toasted fragments of pruning vine-shoots added to the wines after fermentation provide them with differentiated aromatic notes and improve their quality.

Vegetative dose heights ‘Cabernet Sauvignon’ and its influence on fruit and wine quality

The leaf area is of fundamental importance so that the plant can realize adequate levels of photosynthesis for the accumulation of reserves and to reach a suitable maturation of
the berries. In this sense, the objective was to evaluate the effect of different lengths of the stalks from the first support wire, in the must and in the wine of ‘Cabernet Sauvignon’.

Long term influence of a cover crop in the agronomic and oenological performance of CV. Chardonnay

Cover crops are acknowledged to be an interesting tool to produce
higher quality grapes in red varieties, as they generally reduce vine vigour and yield. However, their incidence in white wine quality is not clear, since higher nitrogen availability can play an important positive
role, and cover crops may compete for this nutrient. The possible reduction in available nitrogen can also modify the fermentation processes, as well as the synthesis of aromas in the wine. The aim of this work was to evaluate the long-term effect of a grass cover crop on grape and wine quality.