IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

The effect of sulfur compounds on the formation of varietal thiols in Sauvignon Blanc and Istrian Malvasia wines

Abstract

Varietal thiols 3-sulfanylhexan-1-ol (3SH), 3-sulfanylhexyl acetate (3SHA) and 4-methyl-4-sulfanylpentan-2-one (4SMP) are essential for fruity aromas of Sauvignon Blanc wines. The concentration of varietal thiols in wines was thought to be related to the concentration of their precursors in grapes, however only a small proportion of precursors are released to varietal thiols during fermentation. New findings suggested that specific grape juice metabolites could significantly impact on the development of three major varietal thiols and other aroma compounds of Sauvignon Blanc wines. Among them, elemental sulfur and hydrogen sulfide indicated a positive role on the formation of varietal thiols during vinification (Araujo et al., 2016; Harsch et al., 2013). This research aimed to investigate the addition of different sources of sulfur in grape juice on formation of 3SH, 3SHA, 4SMP and benzene methanethiol (BM) in Sauvignon Blanc and Istrian Malvasia wines. Istrian Malvasia (Vitis vinifera L.) is a local grapevine variety which sometimes aromatically resemble on Sauvignon Blanc.Pressed grape juice was settled overnight and sampled from tank for microfermentations. Additions of different sulfur compounds in 700 mL of juice were performed just before yeast inoculation in four replicates each: (1) control – no addition, (2) addition of reduced glutathione (GSH) (20 and 50 mg/L), (3) addition of methionine (10 and 20 mg/L), (4) addition of cysteine (20 and 40 mg/L), (5) addition of elemental sulfur (5 and 10 mg/L) and (6) addition of  sodium hydrosulfide hydrate (1 and 10 mg/L). Fermentations were performed with Saccharomyces cerevisae (X5, Laffort, France) in 750 mL dark glass bottles at 18-20 °C. After fermentation, 50 mg/L SO2 was added, wines were settled, racked, and stored at -20 °C until analyses. Varietal thiols were analysed by GC-MS/MS (Schimadzu, TQ8050) using the modified method as described (Šuklje et al., 2013).Sauvignon Blanc wines with the addition of 10 mg/L NaSH·xH2O (which releases hydrogen sulfide) had significant higher concentration of 3SH and 3SHA compared to control and other treatments. Istrian Malvasia wines with the addition of 10 mg/L NaSH·xH2O had significant higher concentrations of 3SH but there were no significant differences in 3SHA.  The addition of elemental sulfur increased 3SH and 3SHA in both varieties, however not significantly. Addition of sulphur compounds in our study had no effect on concentration of 4MMP and BM in Sauvignon Blanc or Istrian Malvasia wines. On the other hand, the additions of GSH and cysteine resulted in significantly lower formation of 3SH and 3SHA in Sauvignon Blanc wines in comparison to control and other additions. The latter finding is compliant with the study on model wines by Alegre et al. (2019).Modifying sulfur source composition in grape juice showed some significant changes in concentration of 3SH in both Sauvignon Blanc and Istrian Malvasia wines.

References

Araujo D. L., Vannevel S., Buica A., Callerot S., Fedrizzi B., Kilmartin A. P., du Toit J. W. 2016. Indications of the prominent role of elemental sulfur in the formation of the varietal thiol 3-mercaptohexanol in Sauvignon blanc wine, Food Research International, 98, 79-86.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Vanzo Andreja1, Alenka Mihelčič1, Katja Šuklje1, Klemen Lisjak1

1 Agricultural Institute of Slovenia

Contact the author

Keywords

sulfur compounds, grape juice, varietal thiols, Sauvignon Blanc, Istrian Malvasia

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae.

Kinetics modeling of a sangiovese wine chemical and physical parameters during one-year aging in different tank materials

The use of different tank materials during red wine aging has become increasingly popular, but little is known about their impact on wine chemical and physical parameters.

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Sforzato di Valtellina DOCG is a special reinforced red wine produced using withered Nebbiolo grapes. The withering process takes place in traditional rooms under natural environmental conditions; it starts immediately after the harvest and ends not before the 1st December of the same year. The process can be performed with different bunch placements that can influence the grapes features.The purpose of the study is to compare the effect on grape physico-chemical parameters for four withering bunch placement systems: hanged clusters (HC), plastic crates (CT), breathable mesh fabric on wooden frames panels (MF), and reed mats (RM). For all the systems studied, the withering length was two months at a temperature between 6 and 19 °C and a relative humidity of 41-88%.

What triggers the decision to ripen 

The decision for grape berries to ripen involves a complex interplay of genetic regulation and environmental cues. This review explores the molecular mechanisms underlying the transition from vegetative growth to ripening, focusing on transcriptomic studies and the role of the NAC gene family. Transcriptomic analyses reveal a significant rearrangement of gene expression patterns during this transition, with up-regulation of ripening-related genes and down-regulation of those associated with vegetative growth. A molecular phenology scale providing a high-precision map of berry transcriptomic development, indicates that key molecular changes occur well before the onset of ripening.