IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

Abstract

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms. 

In this work, the bioprotective effect of a mixed inoculum formed by Torulaspora delbrueckii/Lachancea thermotolerans (70/30) during fermentation was evaluated. In order to compare the effect of the studied inoculum with that exerted by SO2 or the inoculation of other commercial yeasts, four different fermentation strategies were tested: spontaneous fermentation, spontaneous fermentation sulfited, fermentation with the mixed inoculum and fermentation with a commercial Saccharomyces cerevisiae yeast. In the first three strategies, after 72 hours the commercial S. cerevisiae yeast was inoculated in order to ensure complete fermentations. Populations of yeasts, lactic bacteria and acetic bacteria, and the physical-chemical parameters of the wines were studied.

The different fermentation strategies caused a differentiation in the yeast species present during fermentation and in the diversity of species found. Regarding populations of lactic acid and acetic acid bacteria, results showed that the effect of the addition of the mixed inoculum reduced the presence of these microorganisms to levels similar to those found in sulfited vinifications.

The analysis of the wines obtained showed differences in some parameters such as lactic acid, which was higher in wines fermented with the mixed inoculum. This result is related to the presence of L. thermotolerans in the mixed inoculum. The high concentration of lactic acid also resulted in higher total acidity in wines fermented with the mixed inoculum. In the color parameters, the wines made with the mixed inoculum together with those inoculated at vatting with S. cerevisiae showed a higher anthocyanin ionization index compared to the wines made by spontaneous fermentation.

The results obtained indicate that the use of the T. delbrueckii/L. thermotolerans mixed inoculum studied can exert a bioprotective effect comparable to that of SO2 in controlling
populations of lactic acid bacteria and acetic acid bacteria during fermentation. In addition, it causes an increase in the acidity of the wine through the production of lactic acid, result of great interest to combat the effects of climate change, and improves some parameters related to color, such as the anthocyanin ionization index.

This study has been co-funded (50/50) by the European Regional Development Fund (ERDF) and the Government of La Rioja, within the ERDF operational program of La Rioja 2014-2020.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Escribano-Viana Rocío1, Garijo Patrocinio1, Santamaría Pilar1, González-Arenzana Lucía1 and Gutiérrez Ana Rosa1

1ICVV, Instituto de Ciencias de la Vid y el Vino

Contact the author

Keywords

Bioprotection, sulfur dioxide, Torulaspora delbrueckii, Lachancea thermotolerans, bacteria

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring the behavior of alternatives to montmorillonite clays in white wine protein stabilization

Visual clarity in wines is crucial for commercial purposes [1]. Potential protein haze in white wines remains a constant concern in wineries, commonly addressed using bentonite [2].

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

Under trellis cover crop induces grapevine tolerance to bunch rot

Botrytis bunch rot occurrence is one of the most important limitations for the wine industry in humid environments. A positive correlation between grapevine growth and susceptibility to fungal pathogens has been found. In theory the effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). However, a reduction in bunch rot incidence can be achieved in some circumstances without major vine growth reduction. The present study was aimed to test the general hypothesis that bunch rot susceptibility is affected by vine vigor, but other factors associated with grapevine vegetative expression could be even more relevant.