IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

Abstract

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms. 

In this work, the bioprotective effect of a mixed inoculum formed by Torulaspora delbrueckii/Lachancea thermotolerans (70/30) during fermentation was evaluated. In order to compare the effect of the studied inoculum with that exerted by SO2 or the inoculation of other commercial yeasts, four different fermentation strategies were tested: spontaneous fermentation, spontaneous fermentation sulfited, fermentation with the mixed inoculum and fermentation with a commercial Saccharomyces cerevisiae yeast. In the first three strategies, after 72 hours the commercial S. cerevisiae yeast was inoculated in order to ensure complete fermentations. Populations of yeasts, lactic bacteria and acetic bacteria, and the physical-chemical parameters of the wines were studied.

The different fermentation strategies caused a differentiation in the yeast species present during fermentation and in the diversity of species found. Regarding populations of lactic acid and acetic acid bacteria, results showed that the effect of the addition of the mixed inoculum reduced the presence of these microorganisms to levels similar to those found in sulfited vinifications.

The analysis of the wines obtained showed differences in some parameters such as lactic acid, which was higher in wines fermented with the mixed inoculum. This result is related to the presence of L. thermotolerans in the mixed inoculum. The high concentration of lactic acid also resulted in higher total acidity in wines fermented with the mixed inoculum. In the color parameters, the wines made with the mixed inoculum together with those inoculated at vatting with S. cerevisiae showed a higher anthocyanin ionization index compared to the wines made by spontaneous fermentation.

The results obtained indicate that the use of the T. delbrueckii/L. thermotolerans mixed inoculum studied can exert a bioprotective effect comparable to that of SO2 in controlling
populations of lactic acid bacteria and acetic acid bacteria during fermentation. In addition, it causes an increase in the acidity of the wine through the production of lactic acid, result of great interest to combat the effects of climate change, and improves some parameters related to color, such as the anthocyanin ionization index.

This study has been co-funded (50/50) by the European Regional Development Fund (ERDF) and the Government of La Rioja, within the ERDF operational program of La Rioja 2014-2020.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Escribano-Viana Rocío1, Garijo Patrocinio1, Santamaría Pilar1, González-Arenzana Lucía1 and Gutiérrez Ana Rosa1

1ICVV, Instituto de Ciencias de la Vid y el Vino

Contact the author

Keywords

Bioprotection, sulfur dioxide, Torulaspora delbrueckii, Lachancea thermotolerans, bacteria

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Oxygen transfer through cork stoppers

During wine conservation in a bottle, the control of oxygen transfer from the outside environment to the wine inside the bottle is a key parameter that determines the wine quality. Many other factors can also influence the evolution of wine during postbottling aging,

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Analysis of the oenological potentials of different oak forests in Hungary

Like France, Hungary has many oak forests used for making barrels since many years. But if the differences between the woods of the North, the East and the South-West forests of France are well known, this is probably not the case of Hungarian forests. However taking into account the essential differences of climates and soils, differences must be significant and the general name “Hungarian oak” must not have any real meaning. We have studied precisely (determination of concentrations of volatile and non-volatile wood compounds, anatomical criteria, measurement of antioxidant capacity) of oaks collected from northeastern Hungary and others collected from the Danube valley in the northwest of the country.