IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

Abstract

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms. 

In this work, the bioprotective effect of a mixed inoculum formed by Torulaspora delbrueckii/Lachancea thermotolerans (70/30) during fermentation was evaluated. In order to compare the effect of the studied inoculum with that exerted by SO2 or the inoculation of other commercial yeasts, four different fermentation strategies were tested: spontaneous fermentation, spontaneous fermentation sulfited, fermentation with the mixed inoculum and fermentation with a commercial Saccharomyces cerevisiae yeast. In the first three strategies, after 72 hours the commercial S. cerevisiae yeast was inoculated in order to ensure complete fermentations. Populations of yeasts, lactic bacteria and acetic bacteria, and the physical-chemical parameters of the wines were studied.

The different fermentation strategies caused a differentiation in the yeast species present during fermentation and in the diversity of species found. Regarding populations of lactic acid and acetic acid bacteria, results showed that the effect of the addition of the mixed inoculum reduced the presence of these microorganisms to levels similar to those found in sulfited vinifications.

The analysis of the wines obtained showed differences in some parameters such as lactic acid, which was higher in wines fermented with the mixed inoculum. This result is related to the presence of L. thermotolerans in the mixed inoculum. The high concentration of lactic acid also resulted in higher total acidity in wines fermented with the mixed inoculum. In the color parameters, the wines made with the mixed inoculum together with those inoculated at vatting with S. cerevisiae showed a higher anthocyanin ionization index compared to the wines made by spontaneous fermentation.

The results obtained indicate that the use of the T. delbrueckii/L. thermotolerans mixed inoculum studied can exert a bioprotective effect comparable to that of SO2 in controlling
populations of lactic acid bacteria and acetic acid bacteria during fermentation. In addition, it causes an increase in the acidity of the wine through the production of lactic acid, result of great interest to combat the effects of climate change, and improves some parameters related to color, such as the anthocyanin ionization index.

This study has been co-funded (50/50) by the European Regional Development Fund (ERDF) and the Government of La Rioja, within the ERDF operational program of La Rioja 2014-2020.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Escribano-Viana Rocío1, Garijo Patrocinio1, Santamaría Pilar1, González-Arenzana Lucía1 and Gutiérrez Ana Rosa1

1ICVV, Instituto de Ciencias de la Vid y el Vino

Contact the author

Keywords

Bioprotection, sulfur dioxide, Torulaspora delbrueckii, Lachancea thermotolerans, bacteria

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Adapting Portuguese vineyards to climate change: impact of different irrigation regimes on phenolic composition

Climate change has led to increased extreme weather events, such as severe droughts and intense rainfall, with regions like Alentejo and Algarve in Portugal, being particularly affected.

Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

The Bull’s Blood of Eger (‘Egri Bikavér’) is one of the most reputed red wines in Hungary and abroad, produced in the Northeastern part of the country.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Amino acids are crucial nitrogen sources in yeast metabolism, influencing both biomass production and fermentation rate. The breakdown byproducts of amino acids contribute to the aroma of the wine and wine’s health benefit compounds. This study focused on the yeast’s extracellular metabolic profile of tryptophan, tyrosine, and phenylalanine belonging to the group of aromatic amino acids in experimental Maraština wines. Alcoholic fermentations were conducted on sterile grape Maraština must using seven autochthonous non-Saccharomyces yeasts in sequential fermentation with commercial Saccharomyces cerevisiae.

WHEY protein hydrolysates enhance grapevine resilience to abiotic and biotic stresses

Context and purpose of the study. The growing need for sustainable solutions in viticulture has led to increased interest in biostimulants that can enhance plant resilience to both abiotic and biotic stresses.