IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

Abstract

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms. 

In this work, the bioprotective effect of a mixed inoculum formed by Torulaspora delbrueckii/Lachancea thermotolerans (70/30) during fermentation was evaluated. In order to compare the effect of the studied inoculum with that exerted by SO2 or the inoculation of other commercial yeasts, four different fermentation strategies were tested: spontaneous fermentation, spontaneous fermentation sulfited, fermentation with the mixed inoculum and fermentation with a commercial Saccharomyces cerevisiae yeast. In the first three strategies, after 72 hours the commercial S. cerevisiae yeast was inoculated in order to ensure complete fermentations. Populations of yeasts, lactic bacteria and acetic bacteria, and the physical-chemical parameters of the wines were studied.

The different fermentation strategies caused a differentiation in the yeast species present during fermentation and in the diversity of species found. Regarding populations of lactic acid and acetic acid bacteria, results showed that the effect of the addition of the mixed inoculum reduced the presence of these microorganisms to levels similar to those found in sulfited vinifications.

The analysis of the wines obtained showed differences in some parameters such as lactic acid, which was higher in wines fermented with the mixed inoculum. This result is related to the presence of L. thermotolerans in the mixed inoculum. The high concentration of lactic acid also resulted in higher total acidity in wines fermented with the mixed inoculum. In the color parameters, the wines made with the mixed inoculum together with those inoculated at vatting with S. cerevisiae showed a higher anthocyanin ionization index compared to the wines made by spontaneous fermentation.

The results obtained indicate that the use of the T. delbrueckii/L. thermotolerans mixed inoculum studied can exert a bioprotective effect comparable to that of SO2 in controlling
populations of lactic acid bacteria and acetic acid bacteria during fermentation. In addition, it causes an increase in the acidity of the wine through the production of lactic acid, result of great interest to combat the effects of climate change, and improves some parameters related to color, such as the anthocyanin ionization index.

This study has been co-funded (50/50) by the European Regional Development Fund (ERDF) and the Government of La Rioja, within the ERDF operational program of La Rioja 2014-2020.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Escribano-Viana Rocío1, Garijo Patrocinio1, Santamaría Pilar1, González-Arenzana Lucía1 and Gutiérrez Ana Rosa1

1ICVV, Instituto de Ciencias de la Vid y el Vino

Contact the author

Keywords

Bioprotection, sulfur dioxide, Torulaspora delbrueckii, Lachancea thermotolerans, bacteria

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Bio-modulating wine acidity: The role of non-Saccharomyces yeasts

In this video recording of the IVES science meeting 2021, Alice Maria Correia Vilela (University of Trás-os-Montes and Alto Douro, Vila Real, Portugal) speaks about bio-modulating wine acidity: the role of non-Saccharomyces yeasts. This presentation is based on an original article accessible for free on IVES Technical Reviews.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

Grapevine sugar concentration model in the Douro Superior, Portugal

Increasingly warm and dry climate conditions are challenging the viticulture and winemaking sector. Digital technologies and crop modelling bear the promise to provide practical answers to those challenges. As viticultural activities strongly depend on harvest date, its early prediction is particularly important, since the success of winemaking practices largely depends upon this key event, which should be based on an accurate and advanced plan of the annual cycle. Herein, we demonstrate the creation of modelling tools to assess grape ripeness, through sugar concentration monitoring. The study area, the Portuguese Côa valley wine region, represents an important terroir in the “Douro Superior” subregion. Two varieties (cv. Touriga Nacional and Touriga Franca) grown in five locations across the Côa Region were considered. Sugar accumulation in grapes, with concentrations between 170 and 230 g l-1, was used from 2014 to 2020 as an indicator of technological maturity conditioned by meteorological factors. The climatic time series were retrieved from the EU Copernicus Service, while sugar data were collected by a non-profit organization, ADVID, and by Sogrape, a leading wine company. The software for calibrating and validating this model framework was the Phenology Modeling Platform (PMP), version 5.5, using Sigmoid and growing degree-day (GDD) models for predictions. The performance was assessed through two metrics: Roots Mean Square Error (RMSE) and efficiency coefficient (EFF), while validation was undertaken using leave-one-out cross-validation. Our findings demonstrate that sugar content is mainly dependent on temperature and air humidity. The models achieved a performance of 0.65

Influence of harvest time and withering length combination on reinforced Nebbiolo wines: phenolic composition, colour traits, and sensory profile

Sforzato di Valtellina DOCG is a reinforced dry red wine produced in the mountain area of Valtellina alpine valley (North Italy), using ‘Nebbiolo’ grapes that undergo a withering process. This process impacts on the grape composition due to a sugar concentration and changes in secondary metabolism influencing volatile organic compounds (VOCs) and polyphenols.

Epigenetics: an innovative lever for grapevine breeding in times of climate changes

Climate change results in erratic weather conditions, which may lead for many crops including grapevine, to a reduced production and products of lower quality. Concerning grapevine, climate change results in shorter growing seasons and dates for budbreak, flowering and fruit maturity occur earlier in many regions. It also leads to an increase of various pests and diseases, as well as the vectors responsible for disease distribution.