terclim by ICS banner
IVES 9 IVES Conference Series 9 EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

Abstract

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3). However, there are few studies on the migration of polyphenols from agglomerated corks treated with supercritical CO₂. Therefore, the present study aimed to quantify the polyphenols released by microagglomerated cork stoppers in hydroalcoholic solutions in comparison with those extracted from natural cork stoppers. Thus, extractions were performed on eight different batches of natural cork stoppers and eleven of microagglomerated cork stoppers treated with supercritical CO₂. For this, six stoppers from each batch were immersed in 400 mL of 12% ethanol solution at 40°C for 10 days. The nineteen macerates were then analyzed by HPLC-DAD-ESI-QQQ to identify and quantify the extracted polyphenols and suberic acid. The microagglomerated corks released significantly fewer polyphenols (i.e., 25 times less). Regarding suberic acid, no differences were observed between both types of cork stoppers. Then, according to the groups obtained by a hierarchical ascending classification based on polyphenol composition, the macerates were pooled in equal volumes to reconstitute four new macerates of natural and/or microagglomerated cork stoppers. These four samples were then submitted to a panel of thirteen judges to perform a sensory profile with olfacto-ry, taste, and mouthfeel descriptors. The results of this sensory profile showed that microagglomerated stoppers appeared to have the lowest overall impact on the olfactory and gustative perception of the hydroalcoholic solutions.

 

1. Culleré, L., Cacho, J., & Ferreira, V. (2009). Comparative study of the aromatic profile of different kinds of wine cork stoppers. Food chemistry, 112(2), 381-387.
2. Azevedo, J., Fernandes, I., Lopes, P., Roseira, I., Cabral, M., Mateus, N., & Freitas, V. (2014). Migration of phenolic compounds from different cork stoppers to wine model solutions : Antioxidant and biological relevance. European Food Research and Technology, 239(6), 951-960.
3. Reis, S. F., Coelho, E., Evtuguin, D. V., Coimbra, M. A., Lopes, P., Cabral, M., Mateus, N., & Freitas, V. (2020). Migration of Tannins and Pectic Polysaccharides from natural cork stoppers to the hydroalcoholic solution. Journal of Agricultural and Food Chemistry, 68(48), 14230-14242.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Anne-Laure Gancel¹, Michaël Jourdes¹, Alexandre Pons1, 2 and Pierre-Louis Teissedre1*

1. Université de Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV, 33140 Villenave d’Ornon
2. Tonnellerie Seguin-Moreau, ZI Merpins, 16103, Cognac, France

Contact the author*

Keywords

wine cork stoppers, polyphenols, suberic acid, sensory analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.
The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.