IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Control of microbial development in wines elaborated by carbonic maceration

Control of microbial development in wines elaborated by carbonic maceration

Abstract

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

In this assay six vinifications were carried out in 300 kg tanks with grapes of the Tempranillo variety. Three tanks were vinified by carbonic maceration (CM) by adding exogenous CO2 and the other three by destemming and crushing (DC). The microbial community present at different times during vinifications was analysed. For this purpose, serial dilutions of the must or wine samples were plated onto different culture media. Total yeasts were measured by seeding onto a GYP culture medium, lactic acid bacteria (LAB) were measured by plating onto an MRS medium and acetic acid bacteria (AAB) were determined by seeding onto a Mann culture medium.

The development of the alcoholic fermentation in the CM tanks was slow, probably due to the low temperature, and the yeast population present was much lower than those of DC. This low number of yeasts caused a greater development of spoilage bacteria (LAB and AAB) in the CM tanks where there was an overlap of alcoholic and malolactic fermentations and even in some cases the MLF ended before the AF. This high presence of LAB caused a rapid development of the MLF but also an increase in volatile acidity and even the piqure of these wines.  However, in the wines made by DC the level of LAB was low, there was no overlap between the two fermentations and the volatile acidity level of the wines was correct. The AAB are strict aerobic microorganisms, and their high presence in CM tanks would indicate that, despite the addition of industrial CO2, adequate anaerobiosis was not achieved.

This work shows the microbiological risks of CM winemaking and the need to strictly control environmental conditions (temperature and the anaerobiosis) during the period in vat for the correct development of the process.

This study has been co-funded (50/50) by the European Regional Development Fund (ERDF) and the Government of La Rioja, within the ERDF operational program of La Rioja 2014-2020. It also has been financed by MCIN/AEI 10.13039/501100011033, Project RTI2018-096051.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Larreina Beatriz1, González-Arenzana Lucía1, Escribano-Viana Rocío1, Garijo Patrocinio1, Santamaría Pilar1, Sanz Susana2 and Gutiérrez Ana Rosa1

1ICVV, Instituto de Ciencias de la Vid y del Vino
2Universidad de La Rioja 

Contact the author

Keywords

carbonic maceration, anaerobiosis, temperature, acetic piqure, lactic piqure

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

The use of remote sensing for intra-block vineyard management

L’unité de gestion technique d’un vignoble est aujourd’hui la parcelle. Néanmoins, au sein d’une même parcelle, la variabilité de l’expression végétative et de la constitution des raisins à maturité, peut être grande, en particulier à cause d’une hétérogénéité du sol.

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Blend wines made of Syrah, Marselan and Tannat, had better color and more phenolic diversity than varietal wines

Background: Elaborating red-wines from grape cultivars with different polyphenolic profiles could improve wine color and its phenolic-dependent characteristics

Evaluation of “Accentuated cut edges” technique on the release of varietal thiols and their precursors in Shiraz and Sauvignon blanc wine production

Accentuated cut edges (ACE) is a novel grape crushing technique used sequentially after a conventional crusher to increase the extraction rate and content of polyphenolics, as shown for Pinot noir wine. This inspired us to apply the technique during Shiraz and Sauvignon blanc winemaking, primarily to assess its impact on the extraction of varietal thiol precursors in grape must/juice and formation of varietal thiols in the resultant wines