IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Control of microbial development in wines elaborated by carbonic maceration

Control of microbial development in wines elaborated by carbonic maceration

Abstract

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

In this assay six vinifications were carried out in 300 kg tanks with grapes of the Tempranillo variety. Three tanks were vinified by carbonic maceration (CM) by adding exogenous CO2 and the other three by destemming and crushing (DC). The microbial community present at different times during vinifications was analysed. For this purpose, serial dilutions of the must or wine samples were plated onto different culture media. Total yeasts were measured by seeding onto a GYP culture medium, lactic acid bacteria (LAB) were measured by plating onto an MRS medium and acetic acid bacteria (AAB) were determined by seeding onto a Mann culture medium.

The development of the alcoholic fermentation in the CM tanks was slow, probably due to the low temperature, and the yeast population present was much lower than those of DC. This low number of yeasts caused a greater development of spoilage bacteria (LAB and AAB) in the CM tanks where there was an overlap of alcoholic and malolactic fermentations and even in some cases the MLF ended before the AF. This high presence of LAB caused a rapid development of the MLF but also an increase in volatile acidity and even the piqure of these wines.  However, in the wines made by DC the level of LAB was low, there was no overlap between the two fermentations and the volatile acidity level of the wines was correct. The AAB are strict aerobic microorganisms, and their high presence in CM tanks would indicate that, despite the addition of industrial CO2, adequate anaerobiosis was not achieved.

This work shows the microbiological risks of CM winemaking and the need to strictly control environmental conditions (temperature and the anaerobiosis) during the period in vat for the correct development of the process.

This study has been co-funded (50/50) by the European Regional Development Fund (ERDF) and the Government of La Rioja, within the ERDF operational program of La Rioja 2014-2020. It also has been financed by MCIN/AEI 10.13039/501100011033, Project RTI2018-096051.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Larreina Beatriz1, González-Arenzana Lucía1, Escribano-Viana Rocío1, Garijo Patrocinio1, Santamaría Pilar1, Sanz Susana2 and Gutiérrez Ana Rosa1

1ICVV, Instituto de Ciencias de la Vid y del Vino
2Universidad de La Rioja 

Contact the author

Keywords

carbonic maceration, anaerobiosis, temperature, acetic piqure, lactic piqure

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.

The influence of terroir on the quality of wine of the Cahors A.O.C

Dans le but d’améliorer la qualité et la typicité des vins de l’Appellation d’0rigine Contrôlée CAHORS, une étude a été réalisée afin de mettre en évidence l’adéquation Cépage-Terroir- Qualité du vin.
Selon la méthodologie proposée par MORLAT et ASSELIN (1992), neuf unités terroirs ont été déterminées. Sur chacune, des parcelles de référence homogènes quant au matériel végétal Cot ou Malbec ( cépage principal de cette appellation greffé sur S04, et aux méthodes culturales, ont été suivies au niveau agronomique et œnologique (GARCIA et al., 1996).

Effect of environmentally friendly vineyard protection strategies on yeast ecology during fermentation

AIM: Currently, an increasing concern from governments and consumers about environmental sustainability of wine production provides new challenges for innovation in wine industry. Accordingly, the application of more-environmentally friendly vineyard treatments against fungal diseases (powdery and downy mildew) could have a cascading impact on yeast ecology of wine production.

AI and blockchain synergy-driven reconstruction of nutritional health value chains in the wine industry

The increasing demand for healthier, more transparent, and sustainable wine products has prompted the need for innovative solutions to optimize the wine health value chain.

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.