IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Control of microbial development in wines elaborated by carbonic maceration

Control of microbial development in wines elaborated by carbonic maceration

Abstract

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

In this assay six vinifications were carried out in 300 kg tanks with grapes of the Tempranillo variety. Three tanks were vinified by carbonic maceration (CM) by adding exogenous CO2 and the other three by destemming and crushing (DC). The microbial community present at different times during vinifications was analysed. For this purpose, serial dilutions of the must or wine samples were plated onto different culture media. Total yeasts were measured by seeding onto a GYP culture medium, lactic acid bacteria (LAB) were measured by plating onto an MRS medium and acetic acid bacteria (AAB) were determined by seeding onto a Mann culture medium.

The development of the alcoholic fermentation in the CM tanks was slow, probably due to the low temperature, and the yeast population present was much lower than those of DC. This low number of yeasts caused a greater development of spoilage bacteria (LAB and AAB) in the CM tanks where there was an overlap of alcoholic and malolactic fermentations and even in some cases the MLF ended before the AF. This high presence of LAB caused a rapid development of the MLF but also an increase in volatile acidity and even the piqure of these wines.  However, in the wines made by DC the level of LAB was low, there was no overlap between the two fermentations and the volatile acidity level of the wines was correct. The AAB are strict aerobic microorganisms, and their high presence in CM tanks would indicate that, despite the addition of industrial CO2, adequate anaerobiosis was not achieved.

This work shows the microbiological risks of CM winemaking and the need to strictly control environmental conditions (temperature and the anaerobiosis) during the period in vat for the correct development of the process.

This study has been co-funded (50/50) by the European Regional Development Fund (ERDF) and the Government of La Rioja, within the ERDF operational program of La Rioja 2014-2020. It also has been financed by MCIN/AEI 10.13039/501100011033, Project RTI2018-096051.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Larreina Beatriz1, González-Arenzana Lucía1, Escribano-Viana Rocío1, Garijo Patrocinio1, Santamaría Pilar1, Sanz Susana2 and Gutiérrez Ana Rosa1

1ICVV, Instituto de Ciencias de la Vid y del Vino
2Universidad de La Rioja 

Contact the author

Keywords

carbonic maceration, anaerobiosis, temperature, acetic piqure, lactic piqure

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Cabernet Sauvignon grapes from recently planted vines in Santa Catarina State (Brazil), were sampled during ripening from the 2005 and 2006 vintages.

Exploring the impact of grape pressing on must and wine composition

Pressing has a relevant impact on the characteristics of the must and subsequently on white wines produced [1]. Therefore, the adequate management of pressing can lead to the desired extraction of phenols and other grape compounds (i.e. Organic acids), aromas and their precursors, allowing the production of balanced wines [2]. This aspect is especially important to sparkling wine where the acidity and pH, and the content of phenols affect its longevity and the expected sensory character.

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles.

Analysis of the daily minimum temperatures variability in the Casablanca Valley, Chile

The Casablanca Valley (CV) has a complex topography and is located near the Pacific Ocean. These factors generate important climatic differences in relation to other wine producing zones of Central Chile.

Integrating RO concentrate in viticultural irrigation for sustainable urban water reclamation

Grapevines (Vitis vinifera L.) require precise irrigation to maintain yield and quality, and the increasing use of reclaimed desalinated water for irrigation raises concerns about the accumulation of reverse osmosis concentrate (ROC), a high-salinity byproduct with no sustainable disposal solution.