IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Antifungal and Laccase-Suppressing Activity of Phenolic Compounds and Their Oxidation Products on Grey Mold-Fungus Botrytis cinerea

Antifungal and Laccase-Suppressing Activity of Phenolic Compounds and Their Oxidation Products on Grey Mold-Fungus Botrytis cinerea

Abstract

Botrytis cinerea causes grey mold that results in severe problems for wine makers worldwide. Infected grapes lead to quality deterioration including formation of off-flavors or browning. The latter is caused by the enzyme laccase which is capable of oxidizing a wide range of phenolic compounds. Since the use of conventional pesticides is associated with many concerns of consumers and authorities regarding environmental and health related issues and may result in fungicide resistance, the development of green alternatives is gaining more attention. Phenolic compounds like ferulic acid or stilbens which serve as phytoalexins have shown promising results in terms of growth-inhibitory effects against B. cinerea. The present study focuses on further investigations of the antifungal and laccase-suppressing effects of these phenols and especially their laccase-derived oxidation products using the syringaldazine-assay for determination of the laccase activity. The results revealed that they can be considered as a sustainable alternative to synthetic fungicides for Botrytis cinerea management.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Umberath Kim Marie1, Schieber Andreas1 and Weber Fabian1

1University of Bonn, Institute of Nutritional and Food Sciences, Molecular Food Technology

Contact the author

Keywords

Botrytis cinerea, laccase, phenolic compounds, oxidation products, antifungal activity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

The soil biodiversity as a support to environmental sustainability in vineyard

The environmental biodiversity is important to guarantee essential services to the living communities, its richness is a symptom of a minor disturbance and improves he environment biological quality.

Integrating genomic prediction into grapevine breeding programs

Genomic selection (GS) has emerged as a transformative tool for accelerating breeding programs by predicting the genetic potential of individuals using genome-wide markers.

The chain of effects between sunburn necroses and rot infestation in the context of climate change

Climate change will increasingly challenge future viticulture due to long-enduring and extreme weather conditions, jeopardizing yield and wine quality in various ways.

Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Over the last decades, wine analysis has become an important analytical field, with emphasis placed on the development of new methodologies for characterization and elaboration control.