An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

Vineyard site selection and determination of adapted grape varieties for a site are the most fundamental factors contributing to vineyard success, but can be challenging to ascertain, especially in developing wine regions. The objective of this research is to demonstrate, and describe the development of an internet based, scientifically objective tool to facilitate vineyard site assessment and grape variety selection in the US. The core of this tool is a spatially explicit environmental database relevant to wine grape production including climate, soil and topography data. The climate summaries are sourced from the U.S. National Climatic Data Center (NCDC) and the World Meteorological Organization (WMO). The daily elements included in our dataset are maximum temperature, minimum temperature, mean temperature, dew point, precipitation, and elevation for 1929 to present. Similarly, our soil database is derived from the Soil Survey Geographic (SSURGO) database for the continental U.S.A and the Harmonized World Soil Database for global soil data. Parameters include soil texture, pH, soil depth, water holding capacity, etc. This database was used to derive established and novel environmental indices relevant to grape production. The indices were used as inputs to mathematical and statistical models to examine the relationship between environmental factors and variety production in selected established growing regions. Finally, we incorporated both the environmental database, and the site/varietal selection models into a web-based site and grape variety selection tool. This tool enables a potential wine grape grower to either determine varieties most suited to a particular site or delineate areas most suitable for growing a particular grape variety.

Authors: Elvis TAKOW (1), Edward W. HELLMAN (2), Andrew G. BIRT (1),
Maria D. TCHAKERIAN (1), Robert N. COULSON (1)

(1) Knowledge Engineering Laboratory, Department of Entomology, Texas A&M University, College Station, TX 77843 USA
(2) Texas A&M University, AgriLife Research and Extension Center, 1102 East FM 1294, Lubbock, TX 79403 USA; Department of Plant and Soil Science, Texas Tech University

Email: takowea@gmail.com

Keywords: GIS, viticulture and site sélection

Related Posts

Share via
Copy link
Powered by Social Snap