IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Assyrtiko wines of Santorini produced by different autochthonous yeasts: Differences in aromatic and organoleptic profiles

Assyrtiko wines of Santorini produced by different autochthonous yeasts: Differences in aromatic and organoleptic profiles

Abstract

Different yeasts were isolated from spontaneous fermentation of Assyrtiko grape must in Santorini Island, Greece. Molecular typing revealed the presence of three Saccharomyces cerevisiae strains (S9, S13, S24) and one strain of the yeast species Nakazawaea ishiwadae (N.i). The four isolated strains were further tested in laboratory scale fermentations of Assyrtiko must in pure inoculation cultures and in sequential inoculation (72 hours) of each S. cerevisiae strain with the strain of N. ishiwadae. All fermentation trials were realised in duplicate.

 Fermentation kinetics were followed by HPLC, while the volatile composition of the final products was determined by GC-MS (qualitative analysis) and GC-FID (quantitative analysis). Sensory evaluation of the samples took place by a panel of 10 trained panellists. In general, the fermentation rate in trials with S.13 and N.i. was lower than the rest, while trials with S9 and S24 resulted in higher ethanol contents in the final product but without statistically important differences. The wines fermented with the S24 and N.i. strains were characterised by the highest concentrations of acetic acid (0.9 and 0.7 g/L respectively) and with S13 by the highest concentration of glycerol (15g/L). In terms of aromatic profile, the trials contacted with S9 were up to 3.5-folds richer in volatile compounds responsible for the fruity character in wines. In addition, the fermentations with S13 and N.i. were about 3-folds richer in compounds characterized by floral character (e.g. phenethyl alcohol, tyrosol etc.), while the most abundant group of compounds in fermentations contacted with S24 strain were the oxidation esters (e.g. ethyl hydrogen succinate). In the sequential inoculations apart from a delay in the completion of alcoholic fermentations, a comparable with single strains fermentations trend in ethanol production and reducing sugar consumption was observed. Intensification of the production of acetic acid, oxidation esters, several ethyl esters and higher alcohols (C5, C6) was also observed. Significantly lower (5-fold) contents of higher alcohols and their corresponding esters, responsible for floral aromas for ferments with N13 compared to ferments with S13 was also noted. Regarding the production of esters responsible for tropical and citrus aromas (e.g. isoamyl acetate, ethyl hexanoate), the highest content was observed in ferments with N13 (1.32 ppm) and N24 (1.97 ppm) while the lowest in ferments with N9 (0.99 ppm). The concentration of most esters was increased for all trials after sequential inoculation compared to the corresponding trials contacted with pure cultures.  The results from the organoleptic analysis are in line with the chemical analysis. Even though, all four newly isolated strains have the ability to ferment and produce dry wines, the most preferred wines by the panel were those produced by S9 and S13 strains.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Kallithraka Stamatina1, Christofi Stefania1, Dimopoulou Maria1, Tsapou Evangelia Anastasia1 and Papanikolaou Seraphim1

1Department of Food Science and Human Nutrition, Laboratory of enology and alcoholic drinks, Agricultural University of Athens 

Contact the author

Keywords

Saccharomyces cerevisiae, Nakazawaea ishiwadae, wine volatile content, sensory analysis, fermentation kinetics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF.

Global warming effects on grape growing climate zones within the Rioja Appllation (DOCa Rioja) in north Spain

Aims: The aims of this work were (1) to assess the changes in some of the main bioclimatic indices used for climate viticultural zoning within the Rioja Appellation area in the north of Spain between 1950-2014 (60 years), and (2) to carry out a comprehensive sociological evaluation among grapegrowers and winemakers of this region, to better understand the impact of climate change on their activity, their degree of concern about it and the potential adaptation measures they would be willing to adopt to cope with it in future years.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

Viticultural zoning applications at the detailed scale of a cooperative winery: terroirs in St­hilaire-d’Ozilhan (AOC Côtes-du-Rhône)

La maîtrise de la typicité du vin s’élabore au niveau local ou communal d’une exploitation viticole et/ou d’une cave, unité de vinification. La cave coopérative de Saint-Hilaire­-d’Ozilhan (AOC Côtes-du-Rhône), dont le territoire communal s’étend sur une superficie de 1 670 ha, couvre près de 310 ha cultivés en vigne. Elle réalise des vinifications «au terroir», en utilisant des regroupements d’unités de sol en 9 unités de terroir potentiellement viticoles, définies en s’appuyant sur la parenté des substrats. Diverses sélections d’une même unité peuvent aboutir aussi à des vins différents, ce qui suggère une hétérogénéité spatiale de certaines unités définies.

How to transform the odor of a white wine into a red wine? Color it red!

Does a white wine smell like red wine if you color it with red food coloring? A study by Morrot, Brochet, and Dubourdieu (2001, Brain and Language) suggests so. Subjects perceived red wine odors when tasting white wine that had been colored red. The perceived odor profile of the colored white wine became similar to that of a red wine. However, the forced-choice procedure used by Morrot et al. has some methodological shortcomings. Here, we used an alternative method (a rating procedure) to evaluate the presented wines.