IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Exogeneous C-S lyase enzyme, a potential tool for thiol enhancement in wine or beer?

Exogeneous C-S lyase enzyme, a potential tool for thiol enhancement in wine or beer?

Abstract

Varietal thiols are considered for years as key aroma compounds in many wines. Their main origin is the cleavage during alcoholic fermentation of S-conjugate precursors present in grapes and musts, even if the levels of precursors already identified struggle to completely explain the levels of thiols found in wine.
In this bioconversion process, yeast is the key since the cleavage of thiol precursors has been demonstrated to be due to the internal C-S lyase activity of the yeast strains. Whatever the intrinsic capacity of the yeast and the regulation mechanisms identified for the transportation of thiol precursor into the cell, the conversion yield remains very low, estimated in most cases at 1%. In this context, the use of exogenous C-S lyases could be an alternative option to reveal a larger part of the thiol aroma.
Our study focused on the characterization of a recombinant C-S lyase model obtained by from Lactobaccilus delbrueckii subsp. bulgaricus, expressed in E. coli [1] to investigate the possibility of using such enzymes in different matrices such as wine, beer or directly hops, known to be rich in thiol precursors.
A spectrophotometric method was developed for the quantification of the C-S lyase activity, using commercially available S-4-nitrophenyl-L-cysteine (Cys(4NP)). This method was then used to study the specificity of substrate and potential competitor recognition, still using Cys(4NP) but also G-4NP, Cys(4NP)-Gly and γGlu-Cys(4NP) conjugates, which were specifically synthesized in our lab, based on our previous results [2].
The C-S lyase we used was able to cleave efficiently Cys(4NP), but not glutathione and dipeptide 4NP-S-conjugates. As expected, pH emerged as a key parameter: no reaction at wine pH (2.8-3.5), low activity at beer pH (4.5-5.6) and > 80% of activity at pH above 6. Assays with N-Ac-Cys(4NP) confirmed that a free amine group on the substrate was compulsory for recognition by the enzyme and subsequent cleavage of the substrate. Free cysteine has also been demonstrated to compete with Cys(4NP) resulting in a dramatic decrease in conversion efficiency.
These first results documented the possibility of using such enzyme in the different matrices, highlighting the constraints for the subsequent identification of C-S lyase more suitable to wine or beer productions

References

[1] Allegrini, A.; Astegno, A.; La Verde, V.; Dominici, P. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavor applications. J. Biochem. 2017, 61, 349−360.
[2] Bonnaffoux, H., Roland, A., Rémond, E., Delpech, S., Schneider, R., & Cavelier, F. (2017). First identification and quantification of S-3-(hexan-1-ol)-γ-glutamyl-cysteine in grape must as a potential thiol precursor, using UPLC-MS/MS analysis and stable isotope dilution assay. Food Chemistry, 237, 877–886.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Clerat Luigi1, Vives Eric1, Cavelier Florine2, Remond Emmanuelle2 and Schneider Rémi3

1PhyMedExp – Physiologie & médecine expérimentale du Cœur et des Muscles [U 1046]
2Institut des biomolécules Max Mousseron (IBMM) – UMR-5247 – CNRS
3Oenobrands Montpellier FR

Contact the author

Keywords

C-S lyase, varietal thiol precursors, wine aroma, S-conjugates

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation.

Strategies for sample preparation and data handling in GC-MS wine applications

It is often said that wine is a complex matrix and the chemical analysis of wine with the thousands of compounds detected and often measured is proof. New technologies can assist not only in separating and identifying wine compounds, but also in providing information about the sample as a whole. Information-rich techniques can offer a fingerprint of a sample (untargeted analysis), a comprehensive view of its chemical composition. Applying statistical analysis directly to the raw data can significantly reduce the number of compounds to be identified to the ones relevant to a particular scientific question. More data can equal more information, but also more noise for the subsequent statistical handling.

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective.

Impact of closures on aroma of godello and torrontés white wines post-bottling

Aromatic composition contributes mainly to the quality aroma of white wine. A natural and gradual evolution of the aroma in the bottle occurs over storage with a very low oxygen content.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.