IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Exogeneous C-S lyase enzyme, a potential tool for thiol enhancement in wine or beer?

Exogeneous C-S lyase enzyme, a potential tool for thiol enhancement in wine or beer?

Abstract

Varietal thiols are considered for years as key aroma compounds in many wines. Their main origin is the cleavage during alcoholic fermentation of S-conjugate precursors present in grapes and musts, even if the levels of precursors already identified struggle to completely explain the levels of thiols found in wine.
In this bioconversion process, yeast is the key since the cleavage of thiol precursors has been demonstrated to be due to the internal C-S lyase activity of the yeast strains. Whatever the intrinsic capacity of the yeast and the regulation mechanisms identified for the transportation of thiol precursor into the cell, the conversion yield remains very low, estimated in most cases at 1%. In this context, the use of exogenous C-S lyases could be an alternative option to reveal a larger part of the thiol aroma.
Our study focused on the characterization of a recombinant C-S lyase model obtained by from Lactobaccilus delbrueckii subsp. bulgaricus, expressed in E. coli [1] to investigate the possibility of using such enzymes in different matrices such as wine, beer or directly hops, known to be rich in thiol precursors.
A spectrophotometric method was developed for the quantification of the C-S lyase activity, using commercially available S-4-nitrophenyl-L-cysteine (Cys(4NP)). This method was then used to study the specificity of substrate and potential competitor recognition, still using Cys(4NP) but also G-4NP, Cys(4NP)-Gly and γGlu-Cys(4NP) conjugates, which were specifically synthesized in our lab, based on our previous results [2].
The C-S lyase we used was able to cleave efficiently Cys(4NP), but not glutathione and dipeptide 4NP-S-conjugates. As expected, pH emerged as a key parameter: no reaction at wine pH (2.8-3.5), low activity at beer pH (4.5-5.6) and > 80% of activity at pH above 6. Assays with N-Ac-Cys(4NP) confirmed that a free amine group on the substrate was compulsory for recognition by the enzyme and subsequent cleavage of the substrate. Free cysteine has also been demonstrated to compete with Cys(4NP) resulting in a dramatic decrease in conversion efficiency.
These first results documented the possibility of using such enzyme in the different matrices, highlighting the constraints for the subsequent identification of C-S lyase more suitable to wine or beer productions

References

[1] Allegrini, A.; Astegno, A.; La Verde, V.; Dominici, P. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavor applications. J. Biochem. 2017, 61, 349−360.
[2] Bonnaffoux, H., Roland, A., Rémond, E., Delpech, S., Schneider, R., & Cavelier, F. (2017). First identification and quantification of S-3-(hexan-1-ol)-γ-glutamyl-cysteine in grape must as a potential thiol precursor, using UPLC-MS/MS analysis and stable isotope dilution assay. Food Chemistry, 237, 877–886.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Clerat Luigi1, Vives Eric1, Cavelier Florine2, Remond Emmanuelle2 and Schneider Rémi3

1PhyMedExp – Physiologie & médecine expérimentale du Cœur et des Muscles [U 1046]
2Institut des biomolécules Max Mousseron (IBMM) – UMR-5247 – CNRS
3Oenobrands Montpellier FR

Contact the author

Keywords

C-S lyase, varietal thiol precursors, wine aroma, S-conjugates

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Unveiling the bioactive potential of aglianco grape pomace: oleanolic acid as a promising natural product

The winemaking industry generates a substantial amount of byproducts, including grape pomace, which is often discarded as waste. However, this seemingly useless material holds a wealth of bioactive compounds with potential health benefits. Recognizing the value of circular economy principles, this study delves into the comprehensive chemical analysis of aglianco grape pomace, aiming to transform this byproduct into a valuable resource.

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

SO2 consumption in white wine oxidation: approaches to low-input vinifications based on rapid electrochemical analyses and predictive enology

Oxidative stability is a critical factor in wine shelf-life. SO₂ is commonly added to wine due to its strong antioxidant activity, although there is a general push to reduce SO₂ use in vinification.