IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Abstract

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.
Recently a highly concentrated L. plantarum starter culture proofed not only being able to induce and finish a malolactic fermentation before the end of alcoholic fermentation, when applied in co-inoculation in high pH red wines, but also to be a tool for high acidic white wines, characterized by a low pH (> pH 2.95) and high malic acid concentrations. Due to its good alcohol tolerance (up to 15 %vol) it can be applied in co-inoculation as well as in sequential inoculation.
An inoculation ratio could be used to control the amount of malic acid to be degraded to achieve both: a partial or a complete degradation of malic acid. Since this strain does not metabolize citric acid, no diacetyl is formed and thus the variety typicity is maintained and wine acidity is harmonized. With the partial or complete removal of the malic acid, the complex double salt or in some cases even necessary extended double salt deacidification could be circumvented. This also avoided calcium input and eliminated the resulting problems with tartar stabilization.
For use in sequential inoculation, a simple MLF pretest can be used to determine the success of an MLF with ML-Prime in a short time (maximum 7 days) and to provide exact information which amount of malic acid will be degraded. The results can be transferred directly into practice.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Krieger-Weber Sibylle1

1Lallemand Office Korntal-Münchingen

Contact the author

Keywords

Malolactic fermentation; Lactiplantibacillus plantarum; facultative hetero-fermentative; starter cultures; diacetyl.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Relationships between sensitivity to high temperature, stomatal conductance and vegetative architecture in a set of grapevine varieties

High temperatures influence plant development and induce a large set of physiological responses at the leaf scale. Stomatal closure is one of the most observed responses to high temperatures. This response is commonly considered as an adaptive strategy to reduce water loss and embolism in the vascular system caused by the high evaporative demand.

Grape texture characteristics are linked to one major qtl

Berry texture and berry skin mechanical properties have high agronomic importance, related to quality and marketing requirements of wine, table and raisin grapes.

Dimethyl sulfide: a compound of interest from grape to wine glass

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing1. Several chemical reactions, occurring in atmosphere protected from oxygen, are favourable to the formation and preservation of sulphur compounds such as dimethyl sulfide (DMS). DMS accumulate in wines thanks to hydrolysis of its precursors (DMSp) mainly constituted by S-

An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

Right after the pouring of champagne in a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1]

Corvina berry morphology and grape composition as affected by two training system (Pergola and Guyot) in a context of climate change scenario

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes. The main cultivars used for these wines are Corvina and Corvinone. In this Region hundreds of years ago a particular training system (Pergola, cordon/cane with horizontal shoot-positioning) was developed. In the last 20 years the Guyot have been introduced in the area; now Pergola and Guyot are equally widespread in the Valpolicella area. In two different environmental conditions (hill and floodplain) two vineyards, one for each type of training system, were studied along two years (2011-2012).