IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Analysis of mousy off-flavour wines

Analysis of mousy off-flavour wines

Abstract

Winemakers are increasingly experimenting with new techniques, such as spontaneous fermentation, prolonged yeast contact, higher pH, minimal sulphur dioxid, filtration and clarification or oxidative ageing. Along with this, the risk of microbial spoilage increases, and so the off-flavour mousiness, long time underestimated, is becoming more frequent. Characteristic of the mousy off-flavour is the delayed perception after swallowing the wine. After a few seconds the flavour appears, reminiscent of a dirty mouse cage. There are three known compounds that cause mousy off-flavor: 2-ethyltetrahydropyridine, 2-acetyltetrahydopyridine, and 2-acetylpyrroline. Yeasts such as Dekkera/Brettanomyces and heterofermentative lactic acid bacteria like Lactobacillus hilgardii can release these compounds.

This study focuses on the analysis of mousy wines. This includes the quantitative analysis of mousy off-flavour compounds in wine using liquid chromatography with mass spectrometry (HPLC-MS). In order to identify the microorganisms in mousy wines, a next-generation sequencing analysis was carried out. Based on these results, a qPCR method will be developed to quantify the corresponding microorganisms in wine. 

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Dietzel Caroline1, Wegmann-Herr Pascal1 and Scharfenberger-Schmeer Maren2

1Institute for Viticulture and Enology (DLR-Rheinpfalz)
2University of Applied Sciences, Kaiserslautern

Contact the author

Keywords

Mousy off-flavour, Wine fault, qPCR, Next-Generation-Sequenzing, LC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Vignobles sur les pentes en Bourgogne : l’aube d’un nouveau modèle de l’Antiquité au Moyen Âge

La découverte d’une vigne gallo-romaine en plaine à Gevrey-Chambertin (Côte-d’Or) constitue un point important pour la compréhension de la construction des terroirs viticoles de Bourgogne. Sa situation en plaine constitue pour nous le point de départ d’une large réflexion sur la mise en place du modèle de viticulture de coteau qui prévaut en Bourgogne et sur les facteurs de ce changement de norme de qualité viticole. Les sources mobilisées pour cette approche interdisciplinaire et diachronique sont géomorphologiques, archéologiques et textuelles.

Can wine composition predict quality? A metabolomics approach to assessing Pinot noir wine quality as rated by experts

The perception of wine quality is determined by the assessment of multiple sensory stimuli, including aroma, taste, mouthfeel and visual aspects. With so many different parameters contributing to the overall perception of wine quality, it is important to consider the contribution of all metabolites in a wine when attempting to relate composition to quality.

Impact of changing climatic factors on physiological and vegetative growth

Scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Aim: To investigate the possibility of utilising simultaneous measurements of absorbance-transmittance and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics, as a robust method that gives rapid results for classification of wines from different regions of South Australia according to their Geographical Indication (GI), and to gain insight into the effect of terroir on inter regional variation.

Fingerprinting as approach to unlock black box of taste

The black box of taste is getting unlocked. The starting point is to distinguish taste from tasting. Consider taste as a product characteristic; tasting is a sensorial activity. Consequently, taste can be studied on a molecular level and therefore be assessed more objectively, whilst tasting is a human activity and by definition subjective.