IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Analysis of mousy off-flavour wines

Analysis of mousy off-flavour wines

Abstract

Winemakers are increasingly experimenting with new techniques, such as spontaneous fermentation, prolonged yeast contact, higher pH, minimal sulphur dioxid, filtration and clarification or oxidative ageing. Along with this, the risk of microbial spoilage increases, and so the off-flavour mousiness, long time underestimated, is becoming more frequent. Characteristic of the mousy off-flavour is the delayed perception after swallowing the wine. After a few seconds the flavour appears, reminiscent of a dirty mouse cage. There are three known compounds that cause mousy off-flavor: 2-ethyltetrahydropyridine, 2-acetyltetrahydopyridine, and 2-acetylpyrroline. Yeasts such as Dekkera/Brettanomyces and heterofermentative lactic acid bacteria like Lactobacillus hilgardii can release these compounds.

This study focuses on the analysis of mousy wines. This includes the quantitative analysis of mousy off-flavour compounds in wine using liquid chromatography with mass spectrometry (HPLC-MS). In order to identify the microorganisms in mousy wines, a next-generation sequencing analysis was carried out. Based on these results, a qPCR method will be developed to quantify the corresponding microorganisms in wine. 

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Dietzel Caroline1, Wegmann-Herr Pascal1 and Scharfenberger-Schmeer Maren2

1Institute for Viticulture and Enology (DLR-Rheinpfalz)
2University of Applied Sciences, Kaiserslautern

Contact the author

Keywords

Mousy off-flavour, Wine fault, qPCR, Next-Generation-Sequenzing, LC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

A general phenological model for characterising grape vine flowering and véraison

The timing of phenology is critical if grape quality potential is to be optimized. Phenological process based models are used to predict phenology. In this study, three different models

Isolation of indigenous yeast strains from the Purcari and Trifești wine centers in the Republic of Moldova and evaluation of their impact on the quality of dry red wines

In the conducted research, 30 yeast strains from red grape varieties were isolated from the Purcari wine center, and 28 yeast strains from red grape varieties were isolated from the Trifești wine center in the Republic of Moldova.

Simulating single band multispectral imaging from hyperspectral imaging: A study into the application of single band visible to near-infrared multispectral imaging for determining table grape quality

To be accepted by the market and consumers table grapes need to meet certain requirements in terms of physical and chemical quality parameters.

Maturità fenolica e cellulare come metodo di valutazione dell’interazione vitigno-ambiente: il caso del Cabernet-Sauvignon

ln the current work, phenolic and cellular maturation curves were used to assess the degree of adaptation of the cultivar Cabernet sauvignon to the sites under esamination. Five wine­-producing zones with different pedoclimatic characteristics and latitudes were considered (Marche, Toscana, Emilia, Friuli and Slovenia).

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.