IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Analysis of mousy off-flavour wines

Analysis of mousy off-flavour wines

Abstract

Winemakers are increasingly experimenting with new techniques, such as spontaneous fermentation, prolonged yeast contact, higher pH, minimal sulphur dioxid, filtration and clarification or oxidative ageing. Along with this, the risk of microbial spoilage increases, and so the off-flavour mousiness, long time underestimated, is becoming more frequent. Characteristic of the mousy off-flavour is the delayed perception after swallowing the wine. After a few seconds the flavour appears, reminiscent of a dirty mouse cage. There are three known compounds that cause mousy off-flavor: 2-ethyltetrahydropyridine, 2-acetyltetrahydopyridine, and 2-acetylpyrroline. Yeasts such as Dekkera/Brettanomyces and heterofermentative lactic acid bacteria like Lactobacillus hilgardii can release these compounds.

This study focuses on the analysis of mousy wines. This includes the quantitative analysis of mousy off-flavour compounds in wine using liquid chromatography with mass spectrometry (HPLC-MS). In order to identify the microorganisms in mousy wines, a next-generation sequencing analysis was carried out. Based on these results, a qPCR method will be developed to quantify the corresponding microorganisms in wine. 

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Dietzel Caroline1, Wegmann-Herr Pascal1 and Scharfenberger-Schmeer Maren2

1Institute for Viticulture and Enology (DLR-Rheinpfalz)
2University of Applied Sciences, Kaiserslautern

Contact the author

Keywords

Mousy off-flavour, Wine fault, qPCR, Next-Generation-Sequenzing, LC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product.

Understanding the impact of climate change on anthocyanin concentrations in Napa Valley Cabernet Sauvignon

Climate change is having a significant impact on the wine industry through more regular drought conditions, fires, and heat events, leading to crop loss. Furthermore, these events can reduce overall quality of the fruit, even when crop yields are not impacted. Anthocyanins are considered one of the most important classes of compounds for red wine production and are known to be sensitive to vine water status and heat events.

“Gentle” sustainable extraction from whole berry by using resonance waves and slight over CO2 overpressure

The traditional methods of grape extraction of enochemical compounds use very often mechanical energy by pistons such as the pigeage or mechanical energy produced by must (delestage, pumping over). Recent trend by winemaker is trying to introduce in the fermentation tank, whole berry grape to avoid even minimal oxidation. Unfortunately, the use of the traditional mechanical techniques aforementioned, very often do not guarantee the optimal extraction with residual sugars in the marc. Use of resonance waves (airmixingtm) and a slight overpressure by CO2 (adcftm) permit to work on whole berry guaranteeing the perfect extraction.

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).

Chemical and sensory evaluation of Bordeaux wines (Cabernet sauvignon and Merlot) and correlation with wine age

This study was carried out on 24 vintages of Cabernet sauvignon and on 7 vintages of Merlot produced by two different Bordeaux growing areas. Proanthocyanidin monomers and oligomers, and several parameters of the proanthocyanidin fraction were analytically assessed.