IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Fast, and full microbiological wine analysis using triple cellular staining.

Fast, and full microbiological wine analysis using triple cellular staining.

Abstract

We propose here a brand new large routine microbiological analysis method intended for oenology, in flow cytometry, using high performance equipment and triple selective cell staining, activated by fluorescence. The results and practical applications of the method are presented: Brettanomyces (Dekkera) Monitoring, fermentations monitoring, bottling and enological practices monitoring.The method allow a complete new microbiological tool for wine industry.The method has been accredited ISO 17025 in our laboratories.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Dubernet Matthieu1, Husset Mélanie1, Adler Sophie1, Lefebvre Cyril1, Guichard Perrine1, Hernandez Fanny1 and Paricaud Tatiana1

1Laboratoires Dubernet

Contact the author

Keywords

Wine microbiology, cytometry, brettanomyces, saccharomyces, bacteria

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

Which risk assessment of water quality in pdo vineyards in Burgundy (France)?

To meet the demand of assessment tool of water managers we adapted to the vine production the INDIGO® method to developed initially for arable farming at the field scale.

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

Insights into the stable isotope ratio variability of hybrid grape varieties

The wine industry faces the consumer’s increasing demand for a sustainable and environmentally-friendly production [1]. This demand has been shared and boosted by the European Union within the European Green Deal in the Farm to Fork strategy that aims to reduce a 50% the pesticide utilisation in farming systems. Among the agronomical approaches so far proposed, the use of mould resitant hybrid varieties -based on crossings of Vitis vinifera with other Vitis spp [2]- with a high tolerance to the attack of vine patogens is gaining the vinegrowers attention and the production area is continuously increasing

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.