Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of organic, biodynamic and conventional production processes on the intrinsic and perceived quality of a typical wine

The effect of organic, biodynamic and conventional production processes on the intrinsic and perceived quality of a typical wine

Abstract

AIM: The aim of this study was to evaluate the impact of the organic, biodynamic and conventional production processes on the typicality of the Chianti DOCG wine and the relation with the environmental impact in terms of CO2 production. Typicality can be defined as a set of properties, described by an intrinsic and perceived quality. Intrinsic quality is the resultant of an eligibility profile, whose parameters are common to all wines (e.g., the sensory attributes and chemical compounds related to acidity, astringency, persistence, alcohol, viscosity, etc.); an identity profile, whose parameters are related to the grape variety and the terroir (aroma and volatile profiles); a style profile related to the brand, expression of the winemaking related choices.

METHODS: Fourteen commercial Chianti DOCG wines from 2016 harvest were selected based on their production management including organic, biodynamic and conventional. A survey was set up in order to get vineyard and winemaking information from the different estates producing the wines object of the present study. This information was converted in terms of estimated carbon dioxide production, on the basis of existing literature data about Life Cycle Analysis (LCA). Phenolic and volatile compositions, color indices and standard chemical parameters were determined on wines.Quantitative Descriptive Analysis was applied to define the eligibility, identity, and style properties (the intrinsic quality), while a group of 45 experts evaluated the differences between wines by Napping test and rated their typicality (perceived quality). For the evaluation of the chemical and sensory differences between wines, three global different models were created (conventional, organic and biodynamic) using a Soft Modelling of Class Analogy (SIMCA).

RESULTS: As regard the results of the survey, the organic and biodynamic managements showed the lower level of estimated values of carbon dioxide production. The statistical elaboration of the chemical and sensory data underlined that the different wine estate managements did not yield any systematic differences on the intrinsic and perceived quality, despite there were detected significant differences between wines. Moreover different levels of quality were evidenced inside every kind of management. In particular, the SIMCA model built on the chemical and sensory profiles highlighted that the conventional wine models presented the less variability, as opposed to the biodynamic model that resulted the more variable in terms of intrinsic and perceived quality.

CONCLUSIONS

The environmentally friendly production processes, such as organic and biodynamic production, with a low environmental impact, may not have necessarily an effect on the identity and thus on the typicality of wine. The process control represents the critical point for all the three kind of

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Monica Picchi

Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy),Francesco MAIOLI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Valentina CANUTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Valentina MILLARINI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Paola DOMIZIO, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Bruno ZANONI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)

Contact the author

Keywords

sangiovese; biodynamic wine; organic wine; quality; typicality; carbon footprint

Citation

Related articles…

Amyndeon‐naoussa: the two faces of Xinomavro

Xinomavro is the most important indigenous red wine variety grown in Northern Greece. It participates in the production of several PGI wines in Macedonia while from 100% Xinomavro the PDO “Amyndeon” and “Naoussa” are produced. The viticultural area of Amyndeon lies in a plateau of 550 ‐700 m of altitude, in a semi‐continental climate with mostly deep sandy loamy soils derived from limestone and marl bedrocks while in Naoussa, Xinomavro is grown in a Mediterranean climate on more heavy textured soils, sandy clay loam to clay, derived from ophiolithic, limestone and marl bedrocks, in an altitude which varies from 150 to 400 m. Different soil, climate and viticultural technique interactions, result in great variability with respect to morphological, ampelographical and physiological characters of Xinomavro as well as in the characteristics of the wines produced. 

Application of grape pomace and stem extracts on Vitis vinifera L. cv. Monastrell: Increased stilbene content of grapes and wines

Pomace and grape stems are the main solid organic waste from winery industries, resulting from the pressing and/or fermentation processes it is generated in large amounts in many parts of the world

Authenticating the geographical origin of wine using fluorescence spectroscopy and machine learning

Wine is a luxury product and a global beverage steeped in history and mystery. Over time, various regions have become renowned for the quality of wines they produce, which adds considerable value to the regions and the brands. On the whole, the international wine market is worth many hundreds of billions of dollars, which attracts unscrupulous operators intent on defrauding wine consumers.

Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Biomass accumulation in yeast has been studied in this work in terms of their role in fermentation processes. So, biotin is involved in many reactions and nitrogen metabolism disorders

Research on the origin and the side effects of chitosan stabilizing properties in wine

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species.