Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of organic, biodynamic and conventional production processes on the intrinsic and perceived quality of a typical wine

The effect of organic, biodynamic and conventional production processes on the intrinsic and perceived quality of a typical wine

Abstract

AIM: The aim of this study was to evaluate the impact of the organic, biodynamic and conventional production processes on the typicality of the Chianti DOCG wine and the relation with the environmental impact in terms of CO2 production. Typicality can be defined as a set of properties, described by an intrinsic and perceived quality. Intrinsic quality is the resultant of an eligibility profile, whose parameters are common to all wines (e.g., the sensory attributes and chemical compounds related to acidity, astringency, persistence, alcohol, viscosity, etc.); an identity profile, whose parameters are related to the grape variety and the terroir (aroma and volatile profiles); a style profile related to the brand, expression of the winemaking related choices.

METHODS: Fourteen commercial Chianti DOCG wines from 2016 harvest were selected based on their production management including organic, biodynamic and conventional. A survey was set up in order to get vineyard and winemaking information from the different estates producing the wines object of the present study. This information was converted in terms of estimated carbon dioxide production, on the basis of existing literature data about Life Cycle Analysis (LCA). Phenolic and volatile compositions, color indices and standard chemical parameters were determined on wines.Quantitative Descriptive Analysis was applied to define the eligibility, identity, and style properties (the intrinsic quality), while a group of 45 experts evaluated the differences between wines by Napping test and rated their typicality (perceived quality). For the evaluation of the chemical and sensory differences between wines, three global different models were created (conventional, organic and biodynamic) using a Soft Modelling of Class Analogy (SIMCA).

RESULTS: As regard the results of the survey, the organic and biodynamic managements showed the lower level of estimated values of carbon dioxide production. The statistical elaboration of the chemical and sensory data underlined that the different wine estate managements did not yield any systematic differences on the intrinsic and perceived quality, despite there were detected significant differences between wines. Moreover different levels of quality were evidenced inside every kind of management. In particular, the SIMCA model built on the chemical and sensory profiles highlighted that the conventional wine models presented the less variability, as opposed to the biodynamic model that resulted the more variable in terms of intrinsic and perceived quality.

CONCLUSIONS

The environmentally friendly production processes, such as organic and biodynamic production, with a low environmental impact, may not have necessarily an effect on the identity and thus on the typicality of wine. The process control represents the critical point for all the three kind of

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Monica Picchi

Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy),Francesco MAIOLI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Valentina CANUTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Valentina MILLARINI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Paola DOMIZIO, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Bruno ZANONI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)

Contact the author

Keywords

sangiovese; biodynamic wine; organic wine; quality; typicality; carbon footprint

Citation

Related articles…

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

Implementation of a deep learning-based approach for detecting and localising automatically grapevine leaves with downy mildew symptoms

Grapevine downy mildew is a disease of foliage caused by Oomycete Plasmopara viticola an endoparasite that develops inside grapevine organs and can infect virtually every green organ. Downy mildew is one of the most destructive diseases in wine-growing regions, drastically reducing yield and fruit quality. Traditional manual disease detection relies on farm experts. Human field scouting has been widely used for monitoring the disease progress, however, is costly, laborious, subjective, and often imprecise.

Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

INTRODUCTION: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining.

Under-vine cover crops as a management tool for irrigated Mediterranean vineyards: agronomic implications and changes in soil physical and biological properties 

Cover crops are increasingly considered in Mediterranean climate vineyards due to a combination of agronomic and regulatory considerations. However, the soil under the vines themselves is typically kept free of vegetation by mechanical plowing or herbicide spraying. Taking into account that these practices may convey a number of non-favourable economic and environmental implications, and the fact that drip irrigation can ease the use of cover crops under the vines, the aim of this work was to evaluate the agronomic implications and the changes in soil physical and biological properties caused by an under-vine cover crop in a Mediterranean area.

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.