IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of different pH values on the interaction between yeast mannoproteins and grape seed flavanols

Effect of different pH values on the interaction between yeast mannoproteins and grape seed flavanols

Abstract

The consequences of the global climate change in the vitiviniculture are revealed as a gap between phenolic and technological grape maturities, higher grape sugar concentration that leads to high wine alcohols levels, lower acidities and high pH values, among others. The unbalanced phenolic maturity caused in this scenario leads to harsh astringency and to instable colour of wines. Previous studies have reported that the addition of yeast mannoproteins (MPs) to wines may have positive effects on these two organoleptic properties due to their capability to interact with wine polyphenols [1]; however, studies about the effect of the pH on these interactions have not been carried out so far.

 MPs are located in the outer layer of yeast cell wall (Saccharomyces cerevisiae) and they are naturally released into the wine during alcoholic fermentation when yeast is actively growing or during aging when cell wall breaks down in the process known as autolysis. Also, commercial MPs can be added during winemaking and/or ageing. The aim of this work was to study the effect of different pH values (pH 3.0 and 4.0) on the interactions between a flavanol extract from Vitis vinifera L. Tempranillo seeds and the MPs obtained from Saccharomyces cerevisiae. Here, the isolation of MPs from the cell walls of S. cerevisiae was performed using Zymolyase 20T enzyme. MPs were purified by using ethanol, temperature and dialysis. The obtained MPs were characterized by SDS-PAGE and their molecular weights (MWs) were determined by HRSEC-RID [2]. The protein percentage was determined by the Lowry method. The monosaccharide composition was determined by HPLC-MS after derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) [3]. Four main MP fractions were identified: F1 (~2%), with a MW 528.8 kDa, F2 (~12%) (174.1 kDa), F3 (~61 %) (61.0 kDa) and F4 (~25 %) (<10 kDa). The MP–flavanol interactions were performed at pH=3 and pH=4 and studied by means of HPLC-DAD-MS, HRSEC-RID and Isothermal Titration Calorimetry (ITC). The results showed noticeably differences in the interactions between the MPs fractions and the flavanol extract depending on the pH values. 

References

[1] C. Alcalde-Eon, et al. (2019). Food Res. Int., 126; 108650.
[2] E. Manjón, et al. (2020). J. Agric. Food Chem. 25; 13459
[3] Y. Ruiz-García et al. (2014). Carbohydr Polym. 114; 102.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Manjón Elvira1, Bosch-Crespo Diana Marelys1, Dueñas Montserrat1 and Escribano-Bailón Mará Teresa1

1Department of Analytical Chemistry, Nutrition and Food Science, Universidad de Salamanca.

Contact the author

Keywords

Saccharomyces cerevisiae, climate change, mannoproteins, flavanols, astringency.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Mapping aromatic profiles of Chardonnay and Sangiovese wines in grafting combination with new rootstocks

Rootstocks play a key role in the adaptation of grapevine to environmental conditions, affecting phenology, vigour, yield and grape quality.

Aknowledgment and management of vocational units in Chianti Rufina

In Tuscany region the Rufina is a district of Chianti D.O.C.G. positioned in Val di Sieve, 20 km north east from Florence.

Effect of grape harvest time on the metabolomic profile of ribolla gialla monovarietal sparkling wines

The timing of grape harvest is crucial factor to be considered in the winemaking process, as delayed harvest increases the content of varietal aromas, esters, aldehydes

Hyperspectral imaging and Raman spectroscopy, nondestructive methods to assess wine grape composition

Grape composition is of high interest for producing quality wines. For that, grape analyses are necessary, and they still require sample preparation, whether with classical analyses or with NIR analyses.

Influence of grape withering on corvina and corvinone aroma composition

AIM:Valpolicella is a wine region located in Italy north-east, famous for the production of dry and sweet red wines from withered grapes, including Amarone and Recioto. The aim of this study is to understand the influence of the withering process on Corvina and Corvinone wines aroma profiles. METHODS:Wines were produced with a standard red wine winemaking protocol with Corvina and Corvinone grapes from different Valpolicella vineyards and vintages. In consideration of the local traditional practice of post-harvest withering of the grapes, wines from each vineyard were obtained from either fresh and withered grapes. Wines were analysed by Solid Phase Extraction and Solid Phase Micro Extraction gas chromatography coupled to mass spectrometry.