IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of different pH values on the interaction between yeast mannoproteins and grape seed flavanols

Effect of different pH values on the interaction between yeast mannoproteins and grape seed flavanols

Abstract

The consequences of the global climate change in the vitiviniculture are revealed as a gap between phenolic and technological grape maturities, higher grape sugar concentration that leads to high wine alcohols levels, lower acidities and high pH values, among others. The unbalanced phenolic maturity caused in this scenario leads to harsh astringency and to instable colour of wines. Previous studies have reported that the addition of yeast mannoproteins (MPs) to wines may have positive effects on these two organoleptic properties due to their capability to interact with wine polyphenols [1]; however, studies about the effect of the pH on these interactions have not been carried out so far.

 MPs are located in the outer layer of yeast cell wall (Saccharomyces cerevisiae) and they are naturally released into the wine during alcoholic fermentation when yeast is actively growing or during aging when cell wall breaks down in the process known as autolysis. Also, commercial MPs can be added during winemaking and/or ageing. The aim of this work was to study the effect of different pH values (pH 3.0 and 4.0) on the interactions between a flavanol extract from Vitis vinifera L. Tempranillo seeds and the MPs obtained from Saccharomyces cerevisiae. Here, the isolation of MPs from the cell walls of S. cerevisiae was performed using Zymolyase 20T enzyme. MPs were purified by using ethanol, temperature and dialysis. The obtained MPs were characterized by SDS-PAGE and their molecular weights (MWs) were determined by HRSEC-RID [2]. The protein percentage was determined by the Lowry method. The monosaccharide composition was determined by HPLC-MS after derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) [3]. Four main MP fractions were identified: F1 (~2%), with a MW 528.8 kDa, F2 (~12%) (174.1 kDa), F3 (~61 %) (61.0 kDa) and F4 (~25 %) (<10 kDa). The MP–flavanol interactions were performed at pH=3 and pH=4 and studied by means of HPLC-DAD-MS, HRSEC-RID and Isothermal Titration Calorimetry (ITC). The results showed noticeably differences in the interactions between the MPs fractions and the flavanol extract depending on the pH values. 

References

[1] C. Alcalde-Eon, et al. (2019). Food Res. Int., 126; 108650.
[2] E. Manjón, et al. (2020). J. Agric. Food Chem. 25; 13459
[3] Y. Ruiz-García et al. (2014). Carbohydr Polym. 114; 102.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Manjón Elvira1, Bosch-Crespo Diana Marelys1, Dueñas Montserrat1 and Escribano-Bailón Mará Teresa1

1Department of Analytical Chemistry, Nutrition and Food Science, Universidad de Salamanca.

Contact the author

Keywords

Saccharomyces cerevisiae, climate change, mannoproteins, flavanols, astringency.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Quality of Merlot wines produced from terraced vineyards and vineyards on alluvial plains in Vipava valley, Slovenia (pdo)

AIM: Different factors affect the style and quality of wine and one of the most important are environmental factors of vineyard location.

Closure permeability modulates the aroma expression of monovarietal white wines during bottle ageing

Bottle ageing is a critical period for wine quality, as it undergoes various chemical and sensory changes during storage. Ideally, a phase of qualitative ageing, during which wine sensory quality improves, is followed by a decline of quality. Understanding how different oenological variables influence these phases is a key challenge in modern winemaking. Recent studies highlighted the significant role of oxygen in modulating reactions involving volatile and non-volatile components, impacting aroma evolution during bottle aging. Oxygen exposure of wine during bottle ageing is mediated by closure.

New fungus-resistant grapevine varieties display high and drought-independent thiol precursor levels

The use of varieties tolerant to diseases is a long-term but promising option to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are starting to release a range of new hybrids performing well regarding fungi susceptibility and wine quality.

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

Postveraison shoot trimming in Tannat and Merlot: preliminary results on yield components, plant balance and berry composition

There is currently a trend towards the production of wines with low alcohol content. To achieve this, grapes with low sugar content must be used. There are techniques at the vineyard level that can delay ripening and avoid excessive sugar accumulation without, a priori, affecting the final polyphenol content. Postveraison shoot trimming (PVST) is experimentally evaluated for these purposes, but its impact under Uruguayan climatic conditions with high interannual variability is not known. The aim of this work is to assess the PVST in Tannat and Merlot cultivars and their impact on yield components, plant balance and berry primary composition. In this study, two commercial vineyards of 10 years old Tannat and Merlot (grafted on SO4) at Canelones Department were selected. During the 2020-201 growing season, grapevines were submitted to PVST when grapes reached 15º Brix. In a randomized block, trimmed (T) and control (C) plants were evaluated with three repetitions each cultivar. Evaluation of the evolution of primary berry composition during ripening, measurement of yield components and plant balance were performed. For both cultivars, PVST did not affect yield components. Merlot reached 5.4 kg per plant and Tannat 7.1 kg, with not statistical significance between treatments. However, statistical differences were observed in terms of plant balance. In Merlot Ravaz Index reached a difference of 5.3 (12.0 in T and 6.7 in C) meanwhile Tannat reached 3.5 of statistical difference (13.7 in T and 10.2 in C). The tendency to imbalance for the treated plants had an impact on the final grape composition. Merlot grapes showed statistical difference in final total acidity (0.3 g of difference between treatments) while treatments impact final sugar content on Tannat grapes (10.0 g of difference between treatments). Further studies are needed to assess the impact of different canopy management techniques in our conditions.