IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Amphora Wines: To Pitch Or Not To Pitch

Amphora Wines: To Pitch Or Not To Pitch

Abstract

Amphora wines are known in Portugal as Vinhos de Talha. In this technology, alcoholic fermentation takes place in clay vessels that traditionally were pitched inside using pine pitch. Vinhos de Talha has a distinctive sensorial profile, due to the ancestral technique of vinification. However nowadays, some clay vessels are impermeabilized with other materials than pitch, such as bee wax and mainly epoxy resins.

The present research is a first study to evaluate if different clay vessels impermeabilization materials impact the volatile profile of wines. Fot that objective, white wines were produced in clay vessels with different coatings: new pitch, old picth, epoxy resin, bee wax and no coating. The volatile composition was analyzed by headspace solid phase microextraction hyphenated with gas chromatography / mass spectrometry (HS-SPME-GC/MS).

A linear discriminant analysis shows that wines can be discriminated according to different clay vessels impermeabilization materials, being the most similar the ones from clay vessels with no coating and the ones from clay vessels with old pitch.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cabrtia Maria João1, Pereira Ana1, Martins Nuno1, Garcia Raquel1 and Gomes da Silva Marco2

1MED – Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora
2LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Contact the author

Keywords

Vinhos de Talha; Volatile profiling; HS-SPME; GC/MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Managing changes in taste: lessons from champagne in britain 1800-1914

This paper focuses on how taste in wine (and other foods) changes and the implications of this process for producers and merchants. It draws primarily on the changing taste of and taste for champagne in Britain in the 19th century. Between 1850 and 1880 champagne went from a dosage level of around 20% (20 grams sugar / litre) to 0%. Champagne became the ‘dinner wine of the elite – drunk with roast meat and savoury dishes. Contemporaries accepted that while most people could distinguish the taste of good champagne from that of bad, very few could distinguish very good from good.

Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Increasing water scarcity and unpredictable rainfall patterns necessitate efficient water management in grape production. This study proposes a novel approach for monitoring grapevine water status in a commercial vertically-shoot-positioned Vitis vinifera L. Tempranillo vineyard using non-invasive spectroscopy with a battery of different AI methods to assess vineyard water status, that could drive precise irrigation. A contactless, miniature NIR spectrometer (900-1900 nm) mounted on a moving vehicle (3 Km/h) was employed to collect spectral data from the vines’ northeast side along six dates in season 2021.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

Projected impacts of climate change on viticulture over France wine-regions using downscalled CMIP6 multi-model data

Winegrape is a crop for which the quality and the identity of the final product depends strongly on the
climatic conditions of the year. By impacting production systems and the way in which wines are
developed, climate change represents a major challenge for the wine industry (Ollat et al., 2021).

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform.