IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Amphora Wines: To Pitch Or Not To Pitch

Amphora Wines: To Pitch Or Not To Pitch

Abstract

Amphora wines are known in Portugal as Vinhos de Talha. In this technology, alcoholic fermentation takes place in clay vessels that traditionally were pitched inside using pine pitch. Vinhos de Talha has a distinctive sensorial profile, due to the ancestral technique of vinification. However nowadays, some clay vessels are impermeabilized with other materials than pitch, such as bee wax and mainly epoxy resins.

The present research is a first study to evaluate if different clay vessels impermeabilization materials impact the volatile profile of wines. Fot that objective, white wines were produced in clay vessels with different coatings: new pitch, old picth, epoxy resin, bee wax and no coating. The volatile composition was analyzed by headspace solid phase microextraction hyphenated with gas chromatography / mass spectrometry (HS-SPME-GC/MS).

A linear discriminant analysis shows that wines can be discriminated according to different clay vessels impermeabilization materials, being the most similar the ones from clay vessels with no coating and the ones from clay vessels with old pitch.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cabrtia Maria João1, Pereira Ana1, Martins Nuno1, Garcia Raquel1 and Gomes da Silva Marco2

1MED – Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora
2LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Contact the author

Keywords

Vinhos de Talha; Volatile profiling; HS-SPME; GC/MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Conventional vineyard practices have lead in many environmental disturbances as erosion, soil compaction, loss of organic matter and soil biodiversity, water contamination

Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Favoring the formation of volatile compounds and their precursors in must and wine represent one of the principal goals during winemaking technology. In recent years, most attention has been placed on using glycosidases to enlarge the aroma profile of white wines. The effect of enzymes makes odorless glycosidically-bound precursors be converted into aromatic compounds. This paper focuses to study the influence of enzymes (pectolytic and β-glycosides) administered before alcoholic fermentation, even if most studies analyze their use in different winemaking stages. Two semi-aromatic varieties such as Fetească regală and Sauvignon blanc were chosen.

Projections of vine phenology and grape composition of Tempranillo variety In Rioja DOCa (Spain) under climate change

Aims: Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenological events and in the length of the growing season, which may affect grape quality. The aim of this research was to analyze the projected changes in vine phenology and on grape composition of the Tempranillo variety in Rioja DOCa under different climate change scenarios.

Challenges for the Implementation of commercial inoculum of arbuscular fungi in a commercial Callet vineyard (Vitis vinifera L.)

Over the past 70 years, scientific literature has consistently illustrated the advantageous effects of arbuscular mycorrhiza fungi (AMF) on plant growth and stress tolerance. Recent reviews not only reaffirm these findings but also underscore the pivotal role of AMF in ensuring the sustainability of viticulture. In fact, various companies actively promote commercial inoculants based on AMF as biofertilizers or biostimulants for sustainable viticulture. However, despite the touted benefits of these products, the consistent effectiveness of AMF inoculants in real-world field conditions remains uncertain.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.