IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Amphora Wines: To Pitch Or Not To Pitch

Amphora Wines: To Pitch Or Not To Pitch

Abstract

Amphora wines are known in Portugal as Vinhos de Talha. In this technology, alcoholic fermentation takes place in clay vessels that traditionally were pitched inside using pine pitch. Vinhos de Talha has a distinctive sensorial profile, due to the ancestral technique of vinification. However nowadays, some clay vessels are impermeabilized with other materials than pitch, such as bee wax and mainly epoxy resins.

The present research is a first study to evaluate if different clay vessels impermeabilization materials impact the volatile profile of wines. Fot that objective, white wines were produced in clay vessels with different coatings: new pitch, old picth, epoxy resin, bee wax and no coating. The volatile composition was analyzed by headspace solid phase microextraction hyphenated with gas chromatography / mass spectrometry (HS-SPME-GC/MS).

A linear discriminant analysis shows that wines can be discriminated according to different clay vessels impermeabilization materials, being the most similar the ones from clay vessels with no coating and the ones from clay vessels with old pitch.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cabrtia Maria João1, Pereira Ana1, Martins Nuno1, Garcia Raquel1 and Gomes da Silva Marco2

1MED – Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora
2LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Contact the author

Keywords

Vinhos de Talha; Volatile profiling; HS-SPME; GC/MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The wine country, between landscape and promoting tool. The example of Chinon and Saint-Nicolas-de-Bourgueil vineyards (France)

When talking about wine, terroirs are never too far. The National Institute of Apellation d’Origine (INAO) defines it as a system inside of which interact a group of human factors, an agricultural production and a physical environment.

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

Local adaptation tools to ensure the viticultural sustainability in a changing climate

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

High-volume mass-market white wines production method by means of harvest-deferred fermentation from desulphited musts allows an efficient business management by avoiding the seasonality in wine sector.

White wine light-strike fault: a comparison between flint and green bottles under the typical supermarket conditions

Consumer preference favors flint-glass wine bottles over the traditional dark-colored, but it is documented that light exposure can cause white wines to produce off-aromas and change in color, and consequently da[1]mage their quality. Aim of the study was to study the white wine shelf life under the typical supermarket conditions, by recording the light and temperature exposure, the colorimetric changes, and the light-strike fault. METHODS: One pilot experiment based on two white wines and eight-time points and one kinetic experiment based on four white wines and seven-time points were designed and realized using a typical supermarket shelf for 32 and 50 days, correspondently. By installing prototype sensors at 32 points of the shelf, the temperature, UV, IR, and Visible light exposure were registered every 10 min. Approximately 600 commercial wines, bottled in flint and colored glass, were used. The colorimetric changes of the wines were registered and the light-strike fault was evaluated.