IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Differentiation and characterization of Spanish fortified wines with protected designation of origin based on volatiles using multivariate approaches

Differentiation and characterization of Spanish fortified wines with protected designation of origin based on volatiles using multivariate approaches

Abstract

Spain is one of the main producers of high-quality fortified wines. Particularly some of them elaborated in Andalusia have acquired a great prestige for being unique due to their production in a specific geographical area with traditional methods, the grape variety used, the climate and the soil. Such is their distinguishing feature achieved that they have been protected by the European Union with the indication “Protected Designation of Origin” (PDO). Thus, there are four PDO of fortified wines in Andalucía (‘Condado de Huelva’, ‘Jerez Xérès Sherry’, ‘Manzanilla Sanlúcar de Barrameda’, and ‘Montilla-Moriles’). Furthermore, within each PDO,there are different categories according to their particular characteristics and winemaking conditions such as the aging process. Hence, Finos and Manzanillas wines are produced by biological aging, Oloroso wines by oxidative aging, and wines such as Amontillado and Palo Cortado wines share both types of aging during their production. The great diversity of high-quality wines on the market and the increase in their demand makes it is necessary to characterize them in order to establish quality and authenticity control parameters, thus protecting and assuring consumers that the product they are purchasing on the market has the quality and characteristics declared. The focus on the aroma has been object of study for the characterization of these products since it is considered one of the most relevant quality criteria for wine. Despite the fact that some authors have previously studied the volatile profile of some of these fortified PDO wines, scarce research has been done to assess the volatile composition of the four Spanish PDO fortified wines [1,2,3]. In this context, the aim of this work was to study and compare the characteristic volatile profile of different fortified wines from each Spanish PDO by headspace solid phase micro-extraction (HS-SPME) in conjunction with gas chromatography-mass spectrometry (GC-MS). Chemometric techniques such as PARAFAC2 was applied to reduce the problems associated with GC-MS analysis of complex mixtures and to obtain the maximum information of the volatile profile for distinguishing between samples. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to study the differentiation of the samples. Volatile composition of the samples allowed the differentiation and classification of the different fortified wines based on the presence of certain compounds which could be considered markers of quality and authenticity for each PDO and type of wine.

References

[1] García-Moreno et al., (2021). LWT – Food Science and Technology,140,110706.
[2] Hevia, K., Castro, R., Natera, R., González-García, J. A., Barroso, C. G., & Durán-Guerrero, E. (2016). Chromatographia, 79(11–12), 763–771.
[3] Zea, L., Moyano, L., Moreno, J., Cortes, B., & Medina, M. (2001). Food Chemistry, 75(1), 79–84.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Ubeda Cristina¹, Cortejosa David¹, Morales María Lourdes¹, Callejón Raquel María¹ and Ríos-Reina Rocío¹

1Departamento Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia, Universidad de Sevilla. Sevilla, Spain

Contact the author

Keywords

fortified wines; protected designation of origin; ageing; volatile compounds; SPME

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Flavor Enhancement Of Neutral White Wines By Mango Peel Products

Varietal flavor is commonly known as the aromatic character of a wine in which the aroma of a particular grape variety predominates. However, not all varieties present particularly pronounced aromas. Therefore, different methods are constantly sought to enhance the aroma of wines with neutral aromatic characteristics, such as the use of glycosidases (1), certain yeast strains (2) or maceration with different agricultural products. In this work, aiming to improve the sensory profile together with the diversification of this product, white wines, derived from a neutral grape variety, were elaborated with the addition of mango peel by-products.

Additives od aids? Evaluation of aroma compounds release from oenological tannins of different botanical origins.

Oenological tannins are products extracted from various botanical sources, such as mimosa,
acacia, oak gall, quebracho, chestnut and tara. The polyphenolic component is obtained through a solid-liquid extraction also using specific solvents, then removed by evaporation or freeze-drying. Tannins are employed in two phases of winemaking, during the pre-fermentative phase or during fining with different purposes such as modulate antioxidant activity, colour stabilization, bacteriostatic activity, protein stabilization and modulation of sensory properties. To date, the current regulatory framework is not very clear. In fact, the Codex Alimentarius classifies commercial tannins as “food additives” but also as
“processing aids”. The main distinction is that “additives” have a technological function in the final food, whereas “processing aids” do not. In this sense, oenological tannins, despite the technological treatments, could contain aromatic compounds of the botanical species they belong to and release them to the wine.

Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Sulfur dioxide is the most commonly used additive in oenology to protect wine from oxidation and microorganisms. Once added to wine SO2 is able to react with carbonyl compounds to form carbonyl bisulfites what affects their reactivity.

How to transform the odor of a white wine into a red wine? Color it red!

Does a white wine smell like red wine if you color it with red food coloring? A study by Morrot, Brochet, and Dubourdieu (2001, Brain and Language) suggests so. Subjects perceived red wine odors when tasting white wine that had been colored red. The perceived odor profile of the colored white wine became similar to that of a red wine. However, the forced-choice procedure used by Morrot et al. has some methodological shortcomings. Here, we used an alternative method (a rating procedure) to evaluate the presented wines.

Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Many microbial starters for the alcoholic and malolactic fermentation processes are commercially available, indicated for diverse wine styles and quality goals. The screening protocols cover a wide range of oenologically relevant features, although some characteristics could also be studied using underexplored powerful techniques. In this study, we applied Fourier Transform Infrared (FTIR) microspectroscopy [1,2] to compare the cell wall biochemical composition and monitor the autolytic process in several wine strains of Saccharomyces cerevisiae.