IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Differentiation and characterization of Spanish fortified wines with protected designation of origin based on volatiles using multivariate approaches

Differentiation and characterization of Spanish fortified wines with protected designation of origin based on volatiles using multivariate approaches

Abstract

Spain is one of the main producers of high-quality fortified wines. Particularly some of them elaborated in Andalusia have acquired a great prestige for being unique due to their production in a specific geographical area with traditional methods, the grape variety used, the climate and the soil. Such is their distinguishing feature achieved that they have been protected by the European Union with the indication “Protected Designation of Origin” (PDO). Thus, there are four PDO of fortified wines in Andalucía (‘Condado de Huelva’, ‘Jerez Xérès Sherry’, ‘Manzanilla Sanlúcar de Barrameda’, and ‘Montilla-Moriles’). Furthermore, within each PDO,there are different categories according to their particular characteristics and winemaking conditions such as the aging process. Hence, Finos and Manzanillas wines are produced by biological aging, Oloroso wines by oxidative aging, and wines such as Amontillado and Palo Cortado wines share both types of aging during their production. The great diversity of high-quality wines on the market and the increase in their demand makes it is necessary to characterize them in order to establish quality and authenticity control parameters, thus protecting and assuring consumers that the product they are purchasing on the market has the quality and characteristics declared. The focus on the aroma has been object of study for the characterization of these products since it is considered one of the most relevant quality criteria for wine. Despite the fact that some authors have previously studied the volatile profile of some of these fortified PDO wines, scarce research has been done to assess the volatile composition of the four Spanish PDO fortified wines [1,2,3]. In this context, the aim of this work was to study and compare the characteristic volatile profile of different fortified wines from each Spanish PDO by headspace solid phase micro-extraction (HS-SPME) in conjunction with gas chromatography-mass spectrometry (GC-MS). Chemometric techniques such as PARAFAC2 was applied to reduce the problems associated with GC-MS analysis of complex mixtures and to obtain the maximum information of the volatile profile for distinguishing between samples. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to study the differentiation of the samples. Volatile composition of the samples allowed the differentiation and classification of the different fortified wines based on the presence of certain compounds which could be considered markers of quality and authenticity for each PDO and type of wine.

References

[1] García-Moreno et al., (2021). LWT – Food Science and Technology,140,110706.
[2] Hevia, K., Castro, R., Natera, R., González-García, J. A., Barroso, C. G., & Durán-Guerrero, E. (2016). Chromatographia, 79(11–12), 763–771.
[3] Zea, L., Moyano, L., Moreno, J., Cortes, B., & Medina, M. (2001). Food Chemistry, 75(1), 79–84.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Ubeda Cristina¹, Cortejosa David¹, Morales María Lourdes¹, Callejón Raquel María¹ and Ríos-Reina Rocío¹

1Departamento Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia, Universidad de Sevilla. Sevilla, Spain

Contact the author

Keywords

fortified wines; protected designation of origin; ageing; volatile compounds; SPME

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Grapes infected with grey mould due Botrytis cinerea are widespread in vineyards during certain growing conditions.

Chemical and sensory characterization of Xinomavro PDO red wine

Aroma is considered one of the most important factors in determining the quality and character of wine. The relationship between wine character and its volatile composition is recognized by several researchers worldwide. Since these compounds influence the sensory perceptions of consumers, both volatile composition and sensory properties are essential in determining wine aroma characteristics.

Aroma diversity of Amarone commercial wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes

Fresh odorous terpenoids in wines, multiples pathways of limonene degradation.

Mint aromas in wine, which manifest as “cool” or “fresh” character, can originate from different chemical classes, one of which is the terpenoids. A broadly diverse, naturally occurring class of chemical compounds, terpenes possess wide applications across multiple industries due to their pharmaceutical, antiseptic, medical, and aromatic properties. Monoterpenes, a subclass of terpenoids, likewise play a major role in wine sensory perception. Within the monoterpenes, those possessing “mint” odor qualities have often been studied in the context of “vegetal” or “herbal” wine faults; however, their role in positive aromatic evolution is less understood. Yet an extensive 2015 study of older premium Bordeaux red wines identified mint as a contributing factor in quality bouquet development. From that point, it was necessary to investigate the origins of those monoterpenes as well as the chemical conditions required for their development during ageing. Those two key points could finally facilitate predicting the apparition of minty character in older wines based on their composition while young.
A principal contributor is the cyclic monoterpene limonene, which was isolated relatively early in grapes and wine. Not only does limonene itself possess a cool, fresh odor, it is also a precursor for, and possible derivative of, additional mint monoterpenes. Among the most commonly found monoterpenes, limonene and its derivatives can constitute the majority of the essential oils of citrus fruits, mint and herb plants, and coniferous trees. Many of these mint monoterpenes also occur in grapes and wine. With aromas ranging from woody and earthy to citrus to mint and herbaceous, their contribution to wine is potentially diverse and multi-faceted. While sometimes, found at concentrations below the sensory threshold, synergistic effects between these molecules could render them perceivable.
This review looks at limonene and its transformation as studied in different matrices, and potential parallels or analogues in wine. Moreover, within the complex kinetics of wine aging, the relative concentrations of mint monoterpenes appears to continue to evolve and change, with additional evidence from model wine solutions suggesting they may even revert to their originating precursors. Continued study of mint monoterpenes and their role in wine aromatics will contribute to a deeper understanding of the development of aging bouquet and the longevity of premium wines.

Effect of terroir and winemaking protocol on the chemical and sensory profiles of Pinot Blanc wine

Wine research in the past years has mainly been focused on laboratory scale due to the possibility of controlling winemaking variables. Conversely, studies on wine quality in relation to the winemaking variables at the winery scale may be able to better account for the actual challenges encountered during wine production. Winemaking problems are recently arising from progressive changes in environmental conditions in relation to the terroir. It is important to realize that each wine region may have specific winemaking protocols and that winemakers often base their decisions on subjective, emotional, and empirical opinions. Due to all the above-mentioned issues, taking the correct decision in winemaking to achieve the desired goals may become even more challenging.