IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Differentiation and characterization of Spanish fortified wines with protected designation of origin based on volatiles using multivariate approaches

Differentiation and characterization of Spanish fortified wines with protected designation of origin based on volatiles using multivariate approaches

Abstract

Spain is one of the main producers of high-quality fortified wines. Particularly some of them elaborated in Andalusia have acquired a great prestige for being unique due to their production in a specific geographical area with traditional methods, the grape variety used, the climate and the soil. Such is their distinguishing feature achieved that they have been protected by the European Union with the indication “Protected Designation of Origin” (PDO). Thus, there are four PDO of fortified wines in Andalucía (‘Condado de Huelva’, ‘Jerez Xérès Sherry’, ‘Manzanilla Sanlúcar de Barrameda’, and ‘Montilla-Moriles’). Furthermore, within each PDO,there are different categories according to their particular characteristics and winemaking conditions such as the aging process. Hence, Finos and Manzanillas wines are produced by biological aging, Oloroso wines by oxidative aging, and wines such as Amontillado and Palo Cortado wines share both types of aging during their production. The great diversity of high-quality wines on the market and the increase in their demand makes it is necessary to characterize them in order to establish quality and authenticity control parameters, thus protecting and assuring consumers that the product they are purchasing on the market has the quality and characteristics declared. The focus on the aroma has been object of study for the characterization of these products since it is considered one of the most relevant quality criteria for wine. Despite the fact that some authors have previously studied the volatile profile of some of these fortified PDO wines, scarce research has been done to assess the volatile composition of the four Spanish PDO fortified wines [1,2,3]. In this context, the aim of this work was to study and compare the characteristic volatile profile of different fortified wines from each Spanish PDO by headspace solid phase micro-extraction (HS-SPME) in conjunction with gas chromatography-mass spectrometry (GC-MS). Chemometric techniques such as PARAFAC2 was applied to reduce the problems associated with GC-MS analysis of complex mixtures and to obtain the maximum information of the volatile profile for distinguishing between samples. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to study the differentiation of the samples. Volatile composition of the samples allowed the differentiation and classification of the different fortified wines based on the presence of certain compounds which could be considered markers of quality and authenticity for each PDO and type of wine.

References

[1] García-Moreno et al., (2021). LWT – Food Science and Technology,140,110706.
[2] Hevia, K., Castro, R., Natera, R., González-García, J. A., Barroso, C. G., & Durán-Guerrero, E. (2016). Chromatographia, 79(11–12), 763–771.
[3] Zea, L., Moyano, L., Moreno, J., Cortes, B., & Medina, M. (2001). Food Chemistry, 75(1), 79–84.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Ubeda Cristina¹, Cortejosa David¹, Morales María Lourdes¹, Callejón Raquel María¹ and Ríos-Reina Rocío¹

1Departamento Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia, Universidad de Sevilla. Sevilla, Spain

Contact the author

Keywords

fortified wines; protected designation of origin; ageing; volatile compounds; SPME

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Polyphenolic profile and dietary fiber content of skins and seeds from unfermented and fermented grape pomace

The valorization of winemaking byproducts is subordinated to the knowledge of their chemical characteristics. This work concerned the determination of the polyphenolic profile and the dietary fiber content of skins and seeds from unfermented and fermented pomace of different cultivars (Moscato bianco, Cortese, Arneis, Pinot Noir, Barbera, Grignolino, Nebbiolo), sampled from some wineries in the Piedmont area (Italy) during the 2020 harvest.

Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Significant wine aroma can be formed from non-volatile precursors that are linked to sugars, including but not limited to grape-derived monoterpene and C13-norisoprenoid glycosides.

Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Depending on the variety, grapes contain several chemical classes of aromatic compounds (i.e., terpenols, norisoprenoids, benzenoids) mainly stored as glycosides in berry skin.

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.

Influence of dehydration and maceration conditions on VOCs composition and olfactory profile of Moscato Bianco passito sweet wine

Among the Vitis vinifera L. cv. Moscato, Moscato Bianco is the oldest and most cultivated one in Europe (1). According to the OIV Focus 2015, Italy is the country with the largest cultivated area of Moscato Bianco with about 12500 hectares (2), that is used to produce well-known wines (i.e., Moscato Passito in Piedmont, Moscato di Trani in Puglia, and Moscatello di Montalcino in Tuscany), mainly obtained from partially dehydrated grapes (1). Different dehydration techniques can strongly modify the chemical compounds of oenological interest, among which Volatile Organic Compounds (VOCs) (1) that are the main responsible for the varietal sensory character of the final wine.