IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 1H-NMR-based Untargeted Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

1H-NMR-based Untargeted Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

Abstract

Untargeted metabolomics has proven to be an effective method to study the impact of the terroir on metabolic profile of wines. In this context, the aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through 1H-NMR metabolomics combined with chemometrics.Grapes from Nero d’Avola L. red cultivar cultivated on four different soil types were separately vinified to obtain four different red wines.One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz. The 1H-NMR spectra were recorded at 298.8 K by applying the NOESYGPPS1D pulse sequency, to achieve water and ethanol signals suppression.The free induction decay (FID) was collected into a time domain of 65536 real data points (64 k), with a spectral width of 8012.82 Hz, a relaxation delay of 4 s and acquisition time of 4 s per scan.The solvent used was D2O, which provided a field frequency lock and the chemical shift reference. No quantitative internal standard was used, and no modification of the pH was performed, to avoid any chemical alteration of the matrix. Signal assignment was performed by comparison to pure compounds spectra by means of Simple Mixture Analysis (SMA) plug-in of MNova 14.2.3 software.The generation of input variables was done via bucketing the spectra within the range 0.50-9.50 ppm. The NMR spectral data were reduced into 0.01 ppm spectral buckets. The resulting dataset was log transformed and scaled to Pareto variance prior to perform unsupervised PCA, by means of MetaboAnalyst web-based tool suite.The PCA reduced the number of original variables (890) to three Principal Components that, combined, accounted for 100 % of the total variance. The 3D PCA scores plot revealed a clear differentiation among the wines. The 3D PCA loadings plot revealed the fragments of the spectra contributing mostly to the separation, that were attributed to flavonoids, aroma compounds and amino acids. The results were related to soils physical-chemical analysis and showed that: 1) high concentrations of flavan-3-ols and flavonols are correlated with high clay content in soils; 2) high concentrations of anthocyanins, amino acids, and aroma compounds are correlated with neutral and moderately alkaline soil pH; 3) low concentrations of flavonoids and aroma compounds are correlated with high soil organic matter content and acidic pH.The 1H-NMR metabolomic analysis combined with chemometrics proved to be an excellent tool to discriminate between wines originating from grapes grown on different soil types and revealed that soils in the Mediterranean area exert a strong impact on the chemical composition of the wines.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bambina Paola1, Spinella Alberto2, Corona Onofrio1, Cinquanta Luciano1 and Conte Pellegrino1

1Department of Agricultural, Food and Forestry Sciences, University of Palermo
2Advanced Technologies Network Center (ATeN Center), University of Palermo

Contact the author

Keywords

Non-Targeted Metabolomics, 1H-NMR, Chemometrics, Terroir, Soil

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Mechanisms responsible for different susceptibility of grapevine varieties to flavescence dorée

Flavescence dorée (FD) is the most serious grapevine yellows disease in Europe. It is caused by phytoplasmas which are transmitted from grapevine to grapevine by the leafhopper Scaphoideus titanus.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Generation of radicals in wine by cavitation and study of their interaction with metals, phenols and carboxylic acids

High-power ultrasounds have been related to an accelerated aging of wines, an effect that has been associated to the formation of radical species caused by the cavitation phenomenon [1]. This phenomenon consists of the formation of bubbles in the liquid medium that, when they collapse, cause high-pressure hot spots and temperatures of up to 4800 k [2], notably increasing the reactivity in the medium.

Genetics of adventitious root formation in grapevines

Commercial grapevine propagation relies on the ability of dormant wood material to develop adventitious roots.

Terroir traceability in grapes, musts and wine: results of research on Gewürztraminer and Sauvignon Blanc grape varieties in northern Italy

In the study of terroir, a separate analysis of its many component factors can be of great help in accurately identifying a vineyard’s natural elements that impact wine quality and typicity. This research used a dedicated pluri-disciplinary approach to investigate the ecological characteristics, including geology and geographical features, of 14 vineyards that produce Gewürztraminer and Sauvignon Blanc cultivars in the alpine Alto Adige DOC wine region. Both the geopedological method using Vineyards Geological Identity (VGI) and the new Solar Radiaton Identity (SRI) topoclimatic classification method were used to provide analytical measurements and qualitative/quantitative characterisations. In addition, wide-ranging targeted and untargeted oenological and chemical analyses were carried out on grapes, musts and wines to correlate the soils’ geomineral and physical conditions with the biochemical properties of their fruits and wines. The research identified strong correlations between vineyard geo-identity and wine biofingerprint, confirming a mineral traceability of strontium rubidium ratio and some minerals distinctive to the local geology, such as K, Ca, Ag, Ba and Mn.  The study also discovered that particular geomineral and physical soil conditions of the studied vineyards are related to the different amount of amino acids, primary varietal aromas and polyphenols found in grapes, musts and wines. The research confirmed that winemaking technologies support oenological quality, although in some cases, human practices can overpower certain characteristic elements in wine, erasing the typical imprint left by the vineyards’ natural terroir, which becomes less traceable. Terroir abiotic ecological factors and vineyard identity can be classified in detail using the new VGI and SRI analysis methods to discover interrelationships between geo-pedological and topoclimatic conditions that impact wine quality. These methods are also helpful in identifying which ecological elements are exclusive to a particular vineyard or wine sub-region.