IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Discrimination of monovarietal Italian red wines using derivative voltammetry

Discrimination of monovarietal Italian red wines using derivative voltammetry

Abstract

Identification of specific analytical fingerprints associated to grape variety, origin, or vintage is of great interest for wine producers, regulatory agencies, and consumers. However, assessing such varietal fingerprint is complex, time consuming, and requires expensive analytical techniques. Voltammetry is a fast, cheap, and user-friendly analytical tool that has been used to investigate and measure wine phenolics. In this work linear sweep voltammetry with different multivariate analysis tools (PCA, LDA, KNN, Random Forest, SVM) has been exploited to discriminate and classify Italian red wines from 10 different varieties.A total of 131 monovarietal Italian red wines vinified in 2015 or 2016 were collected from wineries across Italy. The varieties are: Aglianico, Cannonau, Corvina, Montepulciano, Nebbiolo, Primitivo, Raboso, Sagrantino, Sangiovese, and Teroldego. The wines of the same variety came from the same region. Linear sweep voltammograms were collected using a PalmSense3 potentiostat and disposable Screen-Printed Carbon Electrodes. The derivative voltammograms were obtained with a Savitzky Golay smoothing filter.The results obtained indicated a great diversity of voltammetric responses, but with raw data it was not possible to identify electrochemical features that discriminated the varieties. To obtain a higher discriminant ability first and second order derivative voltammogram were built.The second order derivative voltammograms (2DV) show similar trends within the same variety, in particular the varieties appear to be divided by the potential and intensity of the first peak (180-370 mV).From the PCA of 2DV (explained variance 78% with the first two components) 3 regions of the voltammograms that mainly contribute to PC1 and 4 to PC2 can be identified. Five of these regions (3 for PC1 and 2 for PC2) are at potentials lower than 600 mV, the region associated to the more easily oxidizable compounds. PC1 vs PC2 of the second order derivative voltammetry shows 3 groups with a visible separation of Nebbiolo and Teroldego from the other varieties.The best classification result has been obtained with a PCA-LDA of 2DV using the first 5 PC scores as predictors with an overall accuracy in calibration of 77.9% and an overall accuracy in prediction of 66.7%. The best accuracy has been obtained for varieties Nebbiolo, Teroldego and Sangiovese. The classification of two varieties (Cannonau and Primitivo) resulted problematic both in calibration and in prediction. To conclude, linear sweep voltammetry coupled to chemometric can be a suitable analytical tool technique for the classification of monovarietal red wines in a fast, cheap, and easy-to-use way. In addition, second-order derivative deconvolution of the voltammograms has been proven to be a suitable data pre-processing method for the interpretation of voltammograms from complex matrixes that are rich in oxidable compounds such as red wine.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Vanzo Leonardo1, Slaghenaufi Davide1, Nouvelet Lea1, Curioni Andrea2, Giacosa Simone3, Mattivi Fulvio4, Moio Luigi5 and Versari Andrea5

1Department of Biotechnology, University of Verona, Italy
2Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
3Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Italy
4Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Italy
5Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino, Italy

Contact the author

Keywords

Derivative Voltammetry, Varietal Identity, Wine Fingerprinting, Authenticity, Red Wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.

Under-vine and between the rows: investigating sustainable floor management in vineyards

Investigating vineyard floor management is essential as these practices directly impact soil health, vine growth, and grape quality.

Long-term flooding effects on the physiological and productive performance of Montepulciano and Sangiovese cultivars

Extreme climatic events, such as prolonged drought followed by intense flooding, increasingly impact viticulture, affecting vine physiology, productivity, and grape composition.

Smartphone as a tool for deficit irrigation management in Vitis vinifera  

Vine water status is one of the most influential factors in grape vigor, yield, and quality (Ojeda et al., 2002; Guilpart et al., 2014). Severe water deficits during the first stage of crop development (bud break to fruit set) impact yield in the current year and the following year. While during grape ripening, water availability impacts berry size, grape composition, and health status. Therefore, a correct assessment of plant water status allows for proper water management with an impact on grape yield and composition (McClymont et al, 2012; Pereyra et al., 2022).

La variabilità del colore in vini rosati dell’Italia meridionale

Nei vini rosati, è il colore ad avere il primo impatto con il consumatore. Esso risulterà tanto più accattivante, quanto più elegante e raffinato si presenta.