IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Discrimination of monovarietal Italian red wines using derivative voltammetry

Discrimination of monovarietal Italian red wines using derivative voltammetry

Abstract

Identification of specific analytical fingerprints associated to grape variety, origin, or vintage is of great interest for wine producers, regulatory agencies, and consumers. However, assessing such varietal fingerprint is complex, time consuming, and requires expensive analytical techniques. Voltammetry is a fast, cheap, and user-friendly analytical tool that has been used to investigate and measure wine phenolics. In this work linear sweep voltammetry with different multivariate analysis tools (PCA, LDA, KNN, Random Forest, SVM) has been exploited to discriminate and classify Italian red wines from 10 different varieties.A total of 131 monovarietal Italian red wines vinified in 2015 or 2016 were collected from wineries across Italy. The varieties are: Aglianico, Cannonau, Corvina, Montepulciano, Nebbiolo, Primitivo, Raboso, Sagrantino, Sangiovese, and Teroldego. The wines of the same variety came from the same region. Linear sweep voltammograms were collected using a PalmSense3 potentiostat and disposable Screen-Printed Carbon Electrodes. The derivative voltammograms were obtained with a Savitzky Golay smoothing filter.The results obtained indicated a great diversity of voltammetric responses, but with raw data it was not possible to identify electrochemical features that discriminated the varieties. To obtain a higher discriminant ability first and second order derivative voltammogram were built.The second order derivative voltammograms (2DV) show similar trends within the same variety, in particular the varieties appear to be divided by the potential and intensity of the first peak (180-370 mV).From the PCA of 2DV (explained variance 78% with the first two components) 3 regions of the voltammograms that mainly contribute to PC1 and 4 to PC2 can be identified. Five of these regions (3 for PC1 and 2 for PC2) are at potentials lower than 600 mV, the region associated to the more easily oxidizable compounds. PC1 vs PC2 of the second order derivative voltammetry shows 3 groups with a visible separation of Nebbiolo and Teroldego from the other varieties.The best classification result has been obtained with a PCA-LDA of 2DV using the first 5 PC scores as predictors with an overall accuracy in calibration of 77.9% and an overall accuracy in prediction of 66.7%. The best accuracy has been obtained for varieties Nebbiolo, Teroldego and Sangiovese. The classification of two varieties (Cannonau and Primitivo) resulted problematic both in calibration and in prediction. To conclude, linear sweep voltammetry coupled to chemometric can be a suitable analytical tool technique for the classification of monovarietal red wines in a fast, cheap, and easy-to-use way. In addition, second-order derivative deconvolution of the voltammograms has been proven to be a suitable data pre-processing method for the interpretation of voltammograms from complex matrixes that are rich in oxidable compounds such as red wine.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Vanzo Leonardo1, Slaghenaufi Davide1, Nouvelet Lea1, Curioni Andrea2, Giacosa Simone3, Mattivi Fulvio4, Moio Luigi5 and Versari Andrea5

1Department of Biotechnology, University of Verona, Italy
2Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
3Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Italy
4Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Italy
5Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino, Italy

Contact the author

Keywords

Derivative Voltammetry, Varietal Identity, Wine Fingerprinting, Authenticity, Red Wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Recherche de relations entre terroir et caractéristiques sensorielles des eaux-de-vie de Cognac

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

The concept of terroir: what place for microbiota?

Microbes play key roles on crop nutrient availability via biogeochemical cycles, rhizosphere interactions with roots as well as on plant growth and health. Recent advances in technologies, such as High Throughput Sequencing Techniques, allowed to gain deeper insight on the structure of bacterial and fungal communities associated with soil, rhizosphere and plant phyllosphere. Over the past 10 years, numerous scientific studies have been carried out on the microbial component of the vineyard. Whether the soil or grape compartments have been taken into account, many studies agree on the evidence of regional delineations of microbial communities, that may contribute to regional wine characteristics and typicity. Some authors proposed the term “microbial terroir” including “yeast terroir” for grapes to describe the connection between microbial biogeography and regional wine characteristics. Many factors are involved in terroir including climate, soil, cultivar and human practices as well as their interactions. Studies considering “microbial terroir” greatly contributed to improve our knowledge on factors that shape the vineyard microbial structure and diversity. However, the potential impact of “microbial terroir” on wine composition has yet not received strong scientific evidence and many questions remain to be addressed, related to the functional characterization of the microbial community and its impact on plant physiology and grape composition, the origins and interannual stability of vineyard microbiota, as well as their impact on wine sensorial attributes. The presentation will give an overview on the role of microbiota as a terroir component and will highlight future perspectives and challenges on this key subject for the wine industry.

Managing alcohol in sparkling wine production: adjusting harvest timing and utilizing grape juice in “liqueur de tirage”

Context and purpose of the study. Sparkling wine production is majorly impacted by climate change as sugar accumulation and aromatic development in grapes are often decoupled.

The role of the environmental factor as a component of the terroir in Spain (A.O. Cigales, NW Spain)

The components and the methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].