IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Abstract

Schiava cv. (germ. Vernatsch) is a group of grape varieties used for winemaking (e.g. Kleinvernatsch-Schiava gentile, Grauvernatsch-Schiava grigia, Edelvernatsch-Schiava grossa) historically reported in Northern Italy, Austria, Germany and Croatia. Beside common phenotypic traits, these varieties have been also hypothesized to share a common geographical origin in Slavonia (Eastern Croatia). Nowadays, Schiava cv. are considered historical grape varieties of northern regions of Italy such as Lombardy, Trentino and South Tyrol. Traditionally widely consumed locally and also exported, over the past decades there has been a steady drop in production of these grapes, although with a parallel increase in wine quality. In this report, the effects of three main enological variables on the chemical components of Schiava produced in South Tyrol (var. Schiava grossa) are investigated from grape to bottle. Employing a complete 2-levels/3-factors systematic experimental design (8 theses in triplicates), this study primarily aimed at evaluating the effects of 1) pre-fermentative grape freezing, 2) fermentative maceration, and 3) co-inoculum of yeasts with malolactic bacteria, on the Schiava chemical profile and its overtime evolution, considering also potential interacting factors. The measured parameters included basic enological determinations (e.g. residual sugars, organic acids and alcohol content, measured by specific enzymatic methods or by official methods), quantitative or semi-quantitative phenolic determinations (anthocyanins and derivatives, non-anthocyanins phenolics and condensed tannins – major and minor components – analyzed by LC-QqQ/MS [1]) and the volatile aroma profile (determined by HS-SPME-GCxGC-ToF/MS [2]). In particular, the effects of the applied treatments on the content of specific chemical markers (e.g. highly polar minor condensed tannins [3]) have been highlighted. Besides, a dependance of the ratio between the two main Schiava’s anthocyanins (peonidin-3O-glu and malvidin-3O-glu) on the applied pre-fermentative (e.g. grape freezing) and fermentative (e.g. co-inoculum with malolactic bacteria) conditions was observed [4,5]. Finally, the profile of the major and minor cyclic (high-polarity) condensed tannins was investigated over fining and stabilization steps.

References

[1] Dupas de Matos, A., Longo, E., et al. (2020). Foods, 9(4), 499
[2] Poggesi, S., Dupas de Matos, A., Longo, E., et al. (2021). Molecules, 26(20),    6245
[3] Longo, E., Rossetti, F., Jouin, A., et al. (2019). Food chemistry, 299, 125125
[4] Vivas, N., Lonvaud-Funel, A., & Glories, Y. (1997). Food Microbiology, 14(3), 291-299
[5] Devi, A., Anu-Appaiah, K. A. (2020). American Journal of Enology and Viticulture, 71(2), 105-113

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Longo Edoardo1, Poggesi Simone1, Merkytè Vakarè1, Windisch Giulia1, Mimmo Tanja1 and  Boselli Emanuele1

1Faculty of Science and Technology, Free University of Bozen-Bolzano 

Contact the author

Keywords

Schiava, Vernatsch, winemaking, phenolic compounds, wine aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The effects of perennial cover crop management on soil temperature and vine water status

The implications of perennial cover crop management on vine vigor and yield have been well documented. However, whereas multiple studies show that cover crop management affects grapevine dry matter production, water, and nutrient status, the specific effects of a new hybrid perennial cover crop on soil temperature and its relationship to vine water status in vineyards has not been explored. This study will compare 3 different perennial cover crop combinations and tillage practices with a no-till seeding of a new hybrid perennial, Poa bulbosa (Pb).

Genome wide association mapping of phenology related traits in Vitis vinifera L

Climate change, with rise in temperatures, is leading to an advance in the dates of phenological stages, with a loss in quality of the grape final product. Therefore, the understanding of the genetic determinants driving the phenological stages of flowering, veraison and the interval between them, represents a target for the development of grapevine’s cultivar adapted to the changing environment.
Here we conducted a GWA study to identify SNPs significantly associated to flowering time, veraison time and to the interval among them. A germplasm collection (CREA-VE in Susegana, Treviso, Italy) including 649 grapevine’s cultivar representing 365 unique genotypes was considered.

Modification on grape phenolic and aromatic composition due to different leafroll virus infections

Viral diseases are reported to cause several detrimental effects on grapevine. Among them, leafroll, due to single or mixed infection of GLRaV1 and GLRaV3, and rugose wood, associated to GVA, are considered the most widespread and dangerous.

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow