IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Brown Marmorated Stink Bug taint in grape must and wine: time evolution of trans-2-decenal

Brown Marmorated Stink Bug taint in grape must and wine: time evolution of trans-2-decenal

Abstract

The brown marmorated stink bug (BMSB, Halyomorpha halys Stal) is an invasive pentatomid native to eastern Asia that is spreading rapidly worldwide, notably through human-mediated activities. Globally, it was reported in the USA, Canada, Italy, Hungary, and other European countries. BMSB has a broad host range that includes over 170 plants, many of agricultural importance, including various fruit, vegetables, row crops, and ornamentals. When present in the vineyard, the pest can affect yield and quality by directly feeding on berries resulting in fruit collapse and necrosis. Additional damage occurs when BMSB are carried into the winery within the grape clusters. The presence of BMSB during wine processing can affect juice and wine quality through the release of volatile compounds produced as a stress response. The major secretes compounds are tridecane and trans-2-decenal. Tridecane is an odorless compound and its effect on wine quality is currently unknown. Trans-2-decenal is an unsaturated aldehyde considered to be the main component of BMSB taint with strong green, coriander, and musty-like aromas. Its threshold value in wine was estimated at about 5 µg/L.

The present study aims to evaluate the chemical/biochemical stability of trans-2-decenal and its longevity in grape juice and wine. The target compound was added at 200 µg/L in grape juice and the sample was split in two subsamples. One subsample was microbiologically stabilized using sodium azide, and the other one was subjected to a normal fermentation process. The concentration was monitored over the time by GC-MS technique highlighting a decrease of trans-2-decenal in both experimental conditions. The degradation occurs faster in fermented samples, probably due to the biochemical activity of the yeast and, just after 15 hours from the beginning of fermentation, the compound was no longer detected (<0.1 µg/L). Moreover, the stability of trans-2-decenal was also monitored in wine (200 µg/L) at two different temperatures: 4 and 30 °C. The degradation was also observed in the fermented media, with a strong dependence on temperature. The half-life period was estimated to be 10 days and 1 day at 4 and 30 °C, respectively.The results obtained in this study show that the molecule responsible for the unpleasant odour characteristic of BMSB degrades during the first stages of the fermentation. In the case of a further contamination or residue of the molecule at the end of the alcoholic fermentation, trans-2-decenal continues its disappearance with a slower kinetic rate, depending on the temperature.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Paolini Mauro1, Tonidandel Loris1, Roman Tomas1, Gallo Adelaide1 and Larcher Roberto1

1Fondazione Edmund Mach

Contact the author

Keywords

brown marmorated stink bug, trans-2-decenal, grape juice, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Phenolic, antioxidant, and sensory heterogeneity of oenological tannins: what are their possible winemaking applications?

AIM: The aim of this work was to characterize 18 oenological tannins by the polyphenolic, antioxidant, and sensory point of view.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Sugar loading and phenolic accumulation as affected by ripeness level of Syrah/R99 grapes

Le chargement et l’accumulation des sucres ainsi que la biosynthèse des phénols ont été étudiés sur la Syrah, dans le cadre d’un programme de recherche de paramètres qui permettraient de déterminer une ou plusieurs qualités de raisin en relation avec des styles de vins pour un terroir donné. La relation entre la dynamique d’accumulation des

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Berry shriveling (BS) in vineyards are caused by numerous factors such as sunburn, dehydration, stem necrosis. Climate change results in an increase in day and night temperatures, rainfall throughout the year, changes in the timing and quantities, long dry summers and a combination of climatic variability such as floods, droughts and heatwaves). Grape development and its composition at harvest is influenced by the latter as grape metabolites are sensitive to the environmental conditions. The grape berry experiences water loss and an increase in flavour development as a result of the BS. An increased sugar content in grapes will result in higher alcohol wines and concentration of grape aromas which may be detrimental to the final wine quality.