Terroir 2020 banner
IVES 9 IVES Conference Series 9 Soil variability effects on vine rootzones and available water

Soil variability effects on vine rootzones and available water


Aim: The aim of this work is educating people about soil variability, vine rootzone depth and readily available water holding capacity. The concept of terroir is readily discussed in the wine industry but many people involved are unable to describe a soil profile and interpret its limitations that impact on vine growth, fruit quality and wine produced. This paper discusses soil physical characteristics important to vine root growth and readily available water holding capacity (RAW).

Background and Results: Identification of the soil texture, structure and coarse fragment content is required to determine a vine rootzone depth and readily available water holding capacity (RAW).  Vine rootzone depths are dependent on soil texture and structure. For example vine roots will penetrate 50 cm into a friable sub-angular or angular blocky clay, but only 30 cm into prismatic, columnar or lenticular clay.  Vine rootzone depths are used to calculate the RAW value (mm) of the soil profile and consequently irrigation management units and design.  Water retention curve data used to calculate RAW values uses the relationship between water content and matric potential (Childs, 1940), which is dependent on soil texture and structure (Hillel, 1982). The predicted rootzone depth and RAW values will therefore be dependent on the changes in a landscape which is part of the concept of terroir.

Three examples of soil profile characteristics from a 40 ha property located on the Fleurieu Peninsula of South Australia are presented:

  • Soil 1 is a yellow Sodosol (Isbell, 1996) with deep sand over massive sandy clay.  The predicted rootzone depth is 70 cm and the RAW value 36 mm.  Vine roots are limited by the massive yellow sandy clay at 40 cm;
  • Soil 2 is a red Chromosol (Isbell, 1996) with shallow sandy clay loam topsoil over friable angular blocky clay and clay soil carbonate in the lower subsoil.  The predicted rootzone depth is 60 cm and the RAW value 36 mm.  Vine roots will colonise 50 cm of the friable clay and will penetrate the soil carbonate in the lower subsoil;
  • Soil 3 is a Calcarosol (Isbell, 1996) with sandy clay loam and 50% calcareous rock fragments to 50 cm, below which is un-weathered calcareous shale rock.  The predicted rootzone depth is restricted by the calcareous rock and the high percentage of coarse fragments reduces the RAW value to 18 mm. 


The volume of soil utilised by vine roots and the RAW value are governed by soil physical properties which change with position in the landscape, the concept of terroir.  

Significance and Impact of the Study: Soil profile characterisation is essential to all forms of agriculture and horticulture.  Understanding how soil variability impacts on vine root growth, fruit quality and wine production is the essence of terroir.


Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video


Geoff Kew1*

1Kew Wetherby Soil Survey Pty Ltd, Second Valley, South Australia, Australia, 5204

Contact the author


Soil monolith, soil variability, soil profile description, soil horizon, field hand texture, soil structure


IVES Conference Series | Terroir 2020


Related articles…

Inhibition of reductive characters in wine by cu-organic acids: predicting the duration of protection

Cu organic acid complexes efficiently bind hydrogen sulfide in wine and therefore prevent its accumulation and subsequent reductive off-flavour [1]. This fraction of Cu can also bind methanethiol

Comportement de différents clones de Sauvignon blanc dans certains terroirs viticoles du Friuli-Venezia Giulia (Nord-Est de l’Italie)

The worldwide reputation of Sauvignon Blanc has led technicians to ask themselves various questions about the cultivation of this variety: choice of the most suitable localities, the most effective agronomic strategies and the most appropriate wine-growing techniques, to bring out its particular aroma.

Influence of pedoclimatic factors during berry ripening in Burgundy

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy.

Beyond classical statistics – data fusion coupled with pattern recognition

AIM: Patterns in data obtained from wine chemical and sensory evaluations are difficult to infer using classical statistics.

Climat et sol: critères d’évaluation et effets sur le comportement de la vigne

Le zonage viticole aborde en premier lieu la caractérisation des macroclimats aux échelles des grandes régions, pays, continents ou monde (géoviticulture).