IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of terroir and winemaking protocol on the chemical and sensory profiles of Pinot Blanc wine

Effect of terroir and winemaking protocol on the chemical and sensory profiles of Pinot Blanc wine

Abstract

Wine research in the past years has mainly been focused on laboratory scale due to the possibility of controlling winemaking variables. Conversely, studies on wine quality in relation to the winemaking variables at the winery scale may be able to better account for the actual challenges encountered during wine production. Winemaking problems are recently arising from progressive changes in environmental conditions in relation to the terroir. It is important to realize that each wine region may have specific winemaking protocols and that winemakers often base their decisions on subjective, emotional, and empirical opinions. Due to all the above-mentioned issues, taking the correct decision in winemaking to achieve the desired goals may become even more challenging. Hence, comprehensive analytical and sensory tools could provide substantial support for winemakers to base their decisions on data obtained from validated methodologies throughout the winemaking process. This report presents an example of a collaboration study on a winery-scale production of Pinot Blanc which has become an important production in South Tyrol (Italy) over the last decades, with its cultivation covering 10.3% of the total vineyards (www.altoadigewines.com). The main objective of the present project is to build a fingerprint database for wine identity (chemical and sensory data of Pinot Blanc in that area) to understand how terroir and winemaking practices are influencing the analytical and sensory/hedonic qualities of this wine, and to provide guidelines to winemakers accordingly to aid their decisions. 

The experimental plan for this study included factors such as (I) vineyard location, (II) pre-fermentation freezing of the grapes, and (III) simultaneous alcoholic and malolactic fermentations The samples were analyzed by HPLC-DAD for the determination of the phenolic compounds and by HS-SPME-GCxGC-ToF/MS for determining the volatile profiles. The sensory analysis was performed using Quantitative Descriptive Analysis (QDA ®) (Poggesi et al., 2021). The application of whole grape freezing in pre-processing turned out to be the main differentiating factor of the wines. The results also showed a strong dependence of the measured parameters on the vineyard which could be classified according to significantly different relative abundances of phenolic and volatile compounds. No difference was observed in the phenolic profile as a function of co-inoculation with malolactic bacteria. On the other hand, specific volatile compounds could differentiate samples undergoing simultaneous alcoholic and malolactic fermentation. The chemical results were then integrated with sensory data to create multivariate models, to show how the factors played out on the final quality of the wine obtained. Prospectively, fingerprint databases can be built on these models for authenticity purposes and to assist the winemaker during production.

References

• Alto Adige Wine – Exquisite Wines from Northern Italy (altoadigewines.com)
• Poggesi, S., Dupas de Matos, A., Longo, E., Chiotti, D., Pedri, U., Eisenstecken, D., & Boselli, E. (2021). Chemosensory Profile of South Tyrolean Pinot Blanc Wines: A Multivariate Regression Approach. Molecules, 26(20), 6245. https://doi.org/10.3390/molecules26206245
• Philipp, C., Eder, P., Sari, S., Hussain, N., Patzl-Fischerleitner, E., & Eder, R. (2020). Aromatypicity of Austrian Pinot Blanc Wines. Molecules, 25(23), 5705. https://doi.org/10.3390/molecules25235705
• Philipp, C., Eder, P., Brandes, W., Patzl-Fischerleitner, E., & Eder, R. (2018). The pear aroma in the Austrian Pinot blanc wine variety: evaluation by means of sensorial-analytical-typograms with regard to vintage, wine styles, and origin of wines. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/5123280

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Darnal Aakriti1, Poggessi Simone1, Merkyte Vakare1, Longo Edoardo1, Montali Marco2 and Boselli Emanuele1

1Faculty of Science and Technology, Free University of Bozen-Bolzano
2Faculty of Computer Science, Free University of Bozen-Bolzano

Contact the author

Keywords

Pinot Blanc, wine identity, QDA, volatile profiles

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

Phenolic and volatile profiles of south tyrolean pinot blanc musts and young wines

AIM. Assess the impact of different vineyards and winemaking variables on the phenolic and volatile profiles of Pinot Blanc musts and young wines from South Tyrol.

In vitro regeneration of grapevine cv. Aglianico via somatic embryogenesis: preliminary studies for next genome editing applications  

Italy is a rich hub of viticultural biodiversity harboring hundreds of indigenous grape varieties that have adapted over centuries to the diverse climatic and geographic conditions of its regions. Preserving this biodiversity is essential for maintaining a diversified genetic pool, crucial for addressing future challenges such as climate change and emerging plant diseases. Rising temperatures, precipitation pattern variations, and extreme weather events can affect grape ripening, crop quality, and contribute to disease development. Integrated disease management necessitates exploration of novel strategies. Biotechnologies emerge as a significant player in tackling modern viticulture challenges.

ReGenWine: A transdisciplinary project to assess concepts in regenerative viticulture

Regenerative agriculture is a set of agricultural practices that focus on improving the health of the soil, increasing biodiversity, and enhancing ecosystem services.