IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of the presence of anthocyanins on the interaction between wine phenolic compounds and high molecular weight salivary proteins

Effect of the presence of anthocyanins on the interaction between wine phenolic compounds and high molecular weight salivary proteins

Abstract

As a result of climate change consequences, there is a gap between the times at which the grapes reach the phenolic and the technology maturities. As a consequence, the wine sensory properties are affected and, among them, astringency, one of the most important organoleptic attributes for red wine quality. A balanced astringency is essential for quality wines, since when this sensation is perceived with high intensity, it is considered as unpleasant by consumers. The main mechanism described for the astringency development is the interaction of wine phenolic compounds, such as flavanols and flavonols, with salivary proline-rich proteins (PRPs), forming protein-flavanol complexes that can precipitate, resulting in a loss of lubrication in the oral cavity.Although PRPs are the main proteins studied to explain astringency, there are other types of proteins in saliva, such as mucins that are high molecular weight glycoproteins representing the main proteins in the salivary proteome. It has been reported that mucins can interact with wine flavanols, which could compromise the lubricating functions of mucins, so these proteins may play an important role in astringency sensation.1 Thus, it is important to go deeper into the study of the interactions of these proteins with wine phenolic compounds and the factors that could affect them to get new insight about the mechanisms of astringency sensation.Flavanols and flavonols are also involved in the stabilization of colored forms of malvidin-3-O-glucoside (Mv) through copigmentation effect. Moreover, it has been reported that some flavanol-anthocyanin mixtures present a synergic effect toward the interaction with PRPs when compared to individual polyphenols.2 Hence, the main aim of this work is to assess if the interaction between flavanols and flavonols and high molecular weight proteins is affected due to the involvement of these phenolic compounds in the copigmentation effect. To do this, ternary interactions involving Mv, two individual flavanols (catechin and epicatechin) and/or the flavonol quercetin-3-O-glucoside with mucin from bovine submaxillary glands have been studied by isothermal titration calorimetry (ITC).ITC results show that the studied interactions are driven by both hydrophobic interactions and H-bonds. Results show that mucin interact with the wine phenolic compounds assayed, confirming the possible role of mucins in astringency sensation due to the effect that this interaction may have on lubricating functions of these proteins. Moreover, the presence of anthocyanins in the mixtures affects the interaction between mucins and the phenolic compounds studied, which points out that anthocyanins could play an indirect role on astringency development ant that the whole wine phenolic composition should be considered when astringency sensation is studied.

References

(1) Brandão, E. et al. Molecular study of mucin-procyanidin interaction by fluorescence quenching and saturation transfer difference (STD)-NMR. Food Chem. 2017, 228, 427-434.
(2) Soares, S. et al. Effect of malvidin-3-glucoside and epicatechin interaction on Ttheir ability to interact with salivary proline-rich proteins. Food Chem. 2019, 276, 33–42.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Torres-Rochera Bárbara1, García-Estévez Ignacio1 and Esribano-Bailón Mará Teresa1

1Department of Analytical Chemistry, Nutrition and Food Sciences, Universidad de Salamanca

Contact the author

Keywords

astringency, copigmentation, wine phenolic compounds and ITC

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Leaf necrosis induced by the insecticide carbaryl in Vitis rupestris ‘B38’

Carbaryl is an acetylcholine esterase inhibitor-type insecticide used for pest control on grapevine. We repeatedly observed the occurrence of interveinal leaf necrosis following carbaryl spray application in a Vitis rupestris x Vitis riparia F1 hybrid progeny vineyard. Spray applications induced necrosis in this progeny under both Missouri and New York field conditions an approximate one-to-one sensitive-to-insensitive segregation ratio and with 42% concordance. Results of subsequent in vitro experiments established causality between carbaryl treatment and leaf necrosis and confirmed the pattern of segregation observed in the field. We consistently map this phenotype to a major QTL on chromosome 16 of the female parent V. rupestris ‘B38’ regardless of whether we used field or in vitro-generated phenotype data.

Synthesis of the contribution of the Giesco (group of international experts of vitivinicultural systems for cooperation) to the study of terroirs

Since 1998, the GiESCO (previously named GESCO: Groupe d’Etude des Systèmes de COnduite de la vigne) has provided the scientific community with relevant contributions to the study of terroirs. Here is a synthesis of the main terroir-related fields and the major ideas the GiESCO has developed: Basic Terroir Unit and climate, Vine Ecophysiology and microclimate – moderate drought, Vineyard heterogeneity and new technologies, Viticultural Terroir Unit and canopy management, Terroir – Territory and man.

Cultivation of grapes Chardonnay in soils with management practices biodynamic and conventional

The cultivation of grapes, can be accomplished with the use of different systems and practices of agricultural management, the choice of the system to be followed in the vineyard, depends on the conditions of available resources, these being: natural, economic, social, cultural and territorial. As well, it is relevant to know the characteristics of the soil of the vineyard. In the last decade, has been recurrent use of agricultural practices which date back to milinares traditions, with the aim of promoting a recovery of soil and lead the management of cultivation with less damage to the ecosystem. The study here, aimed to quantify the environmental impacts caused in the use of nutrients in conventional tillage and of grapes in the biodynamic agricultural properties in the state of Rio Grande do Sul- Brazil.

Rootstock effects on cv. Ugni blanc berry and wine composition

In the Cognac region in France, Ugni blanc is the most planted grape variety (98% of the 80 500 ha). This vine region is in expansion due to the success of the associated well-known brandy and the need of high grape yield to guarrantee the production of base wine for distillation. About 2 to 3000 ha are newly planted each year and rootstocks are one powerfull tool for vineyard adaptation to soil or climate change. As rootstocks ensure water and mineral nutrient supplies to the scion, it is important to better understand their effect on berry compostionnal parameters such as sugars and nitrogen compounds, which are the main precursors for fermentary aroma metabolites, the latter being quality markers for Cognac after distillation.

Impact of crop load management on terpene content in gewürztraminer grapes

Context and purpose of the study ‐ Crop load management by cluster thinning can improve ripening and the concentration of key metabolites for grape and wine quality. However, little work has been done on testing the impact of crop load management on terpene content of white grapes. The goal of the study was to assess if by reducing crop load via cluster thinning growers can increase terpene concentration of grapes, as well as to test if the timing of thinning application affects terpene concentration.