IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of the presence of anthocyanins on the interaction between wine phenolic compounds and high molecular weight salivary proteins

Effect of the presence of anthocyanins on the interaction between wine phenolic compounds and high molecular weight salivary proteins

Abstract

As a result of climate change consequences, there is a gap between the times at which the grapes reach the phenolic and the technology maturities. As a consequence, the wine sensory properties are affected and, among them, astringency, one of the most important organoleptic attributes for red wine quality. A balanced astringency is essential for quality wines, since when this sensation is perceived with high intensity, it is considered as unpleasant by consumers. The main mechanism described for the astringency development is the interaction of wine phenolic compounds, such as flavanols and flavonols, with salivary proline-rich proteins (PRPs), forming protein-flavanol complexes that can precipitate, resulting in a loss of lubrication in the oral cavity.Although PRPs are the main proteins studied to explain astringency, there are other types of proteins in saliva, such as mucins that are high molecular weight glycoproteins representing the main proteins in the salivary proteome. It has been reported that mucins can interact with wine flavanols, which could compromise the lubricating functions of mucins, so these proteins may play an important role in astringency sensation.1 Thus, it is important to go deeper into the study of the interactions of these proteins with wine phenolic compounds and the factors that could affect them to get new insight about the mechanisms of astringency sensation.Flavanols and flavonols are also involved in the stabilization of colored forms of malvidin-3-O-glucoside (Mv) through copigmentation effect. Moreover, it has been reported that some flavanol-anthocyanin mixtures present a synergic effect toward the interaction with PRPs when compared to individual polyphenols.2 Hence, the main aim of this work is to assess if the interaction between flavanols and flavonols and high molecular weight proteins is affected due to the involvement of these phenolic compounds in the copigmentation effect. To do this, ternary interactions involving Mv, two individual flavanols (catechin and epicatechin) and/or the flavonol quercetin-3-O-glucoside with mucin from bovine submaxillary glands have been studied by isothermal titration calorimetry (ITC).ITC results show that the studied interactions are driven by both hydrophobic interactions and H-bonds. Results show that mucin interact with the wine phenolic compounds assayed, confirming the possible role of mucins in astringency sensation due to the effect that this interaction may have on lubricating functions of these proteins. Moreover, the presence of anthocyanins in the mixtures affects the interaction between mucins and the phenolic compounds studied, which points out that anthocyanins could play an indirect role on astringency development ant that the whole wine phenolic composition should be considered when astringency sensation is studied.

References

(1) Brandão, E. et al. Molecular study of mucin-procyanidin interaction by fluorescence quenching and saturation transfer difference (STD)-NMR. Food Chem. 2017, 228, 427-434.
(2) Soares, S. et al. Effect of malvidin-3-glucoside and epicatechin interaction on Ttheir ability to interact with salivary proline-rich proteins. Food Chem. 2019, 276, 33–42.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Torres-Rochera Bárbara1, García-Estévez Ignacio1 and Esribano-Bailón Mará Teresa1

1Department of Analytical Chemistry, Nutrition and Food Sciences, Universidad de Salamanca

Contact the author

Keywords

astringency, copigmentation, wine phenolic compounds and ITC

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS

Investigating the carbon sequestration potential in vineyard soils–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard in a climate change scenario.

Loose clustered vignoles clones reduce late season fruit rots

‘Vignoles’ is an aromatic, white-fruited wine grape variety valued by growers and wineries in the Eastern United States. Vignoles is grown in diverse locations in New York, Missouri, Indiana, Ohio, Pennsylvania, Illinois, Nebraska and Michigan. Consumers recognize and value the variety for its special wine quality.

Novel insights into Passito wines aroma typicality. Rationalizing the markers of varietal and geographical origin of Amarone DOCG

Valpolicella is a famous Italian wine-producing region (Paronetto & Dellaglio, 2011), whose main characteristic is the extensive use of the post-harvest withering technique, which takes place in naturally ventilated rooms called ‘fruttai’ (Bellincontro et al., 2016).

Implication of secondary viral infections on grafting success rated in nurseries

Grapevine grafting is a complex process that since the establishment of phylloxera has become mandatory for grapevine. Grafting success in grapevine nurseries considerably varies among years and batches with most variety/rootstock combinations reach a high success rate (between 75% and 90%), but some combinations show lower success rates of around 40-50%. The causes of this variation are unknown, although biotic stresses like those caused by some viral infections have been demonstrated to affect the process. European certification schemes for the vegetative propagation of the vine include five major viruses (Arabis mosaic virus, Grapevine Fanleaf Virus, Grapevine Fleck Virus, and Grapevine-associated Leafroll Virus 1 and 3).