IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of the presence of anthocyanins on the interaction between wine phenolic compounds and high molecular weight salivary proteins

Effect of the presence of anthocyanins on the interaction between wine phenolic compounds and high molecular weight salivary proteins

Abstract

As a result of climate change consequences, there is a gap between the times at which the grapes reach the phenolic and the technology maturities. As a consequence, the wine sensory properties are affected and, among them, astringency, one of the most important organoleptic attributes for red wine quality. A balanced astringency is essential for quality wines, since when this sensation is perceived with high intensity, it is considered as unpleasant by consumers. The main mechanism described for the astringency development is the interaction of wine phenolic compounds, such as flavanols and flavonols, with salivary proline-rich proteins (PRPs), forming protein-flavanol complexes that can precipitate, resulting in a loss of lubrication in the oral cavity.Although PRPs are the main proteins studied to explain astringency, there are other types of proteins in saliva, such as mucins that are high molecular weight glycoproteins representing the main proteins in the salivary proteome. It has been reported that mucins can interact with wine flavanols, which could compromise the lubricating functions of mucins, so these proteins may play an important role in astringency sensation.1 Thus, it is important to go deeper into the study of the interactions of these proteins with wine phenolic compounds and the factors that could affect them to get new insight about the mechanisms of astringency sensation.Flavanols and flavonols are also involved in the stabilization of colored forms of malvidin-3-O-glucoside (Mv) through copigmentation effect. Moreover, it has been reported that some flavanol-anthocyanin mixtures present a synergic effect toward the interaction with PRPs when compared to individual polyphenols.2 Hence, the main aim of this work is to assess if the interaction between flavanols and flavonols and high molecular weight proteins is affected due to the involvement of these phenolic compounds in the copigmentation effect. To do this, ternary interactions involving Mv, two individual flavanols (catechin and epicatechin) and/or the flavonol quercetin-3-O-glucoside with mucin from bovine submaxillary glands have been studied by isothermal titration calorimetry (ITC).ITC results show that the studied interactions are driven by both hydrophobic interactions and H-bonds. Results show that mucin interact with the wine phenolic compounds assayed, confirming the possible role of mucins in astringency sensation due to the effect that this interaction may have on lubricating functions of these proteins. Moreover, the presence of anthocyanins in the mixtures affects the interaction between mucins and the phenolic compounds studied, which points out that anthocyanins could play an indirect role on astringency development ant that the whole wine phenolic composition should be considered when astringency sensation is studied.

References

(1) Brandão, E. et al. Molecular study of mucin-procyanidin interaction by fluorescence quenching and saturation transfer difference (STD)-NMR. Food Chem. 2017, 228, 427-434.
(2) Soares, S. et al. Effect of malvidin-3-glucoside and epicatechin interaction on Ttheir ability to interact with salivary proline-rich proteins. Food Chem. 2019, 276, 33–42.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Torres-Rochera Bárbara1, García-Estévez Ignacio1 and Esribano-Bailón Mará Teresa1

1Department of Analytical Chemistry, Nutrition and Food Sciences, Universidad de Salamanca

Contact the author

Keywords

astringency, copigmentation, wine phenolic compounds and ITC

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Landscape study of the Suzette rural district. A vineyard in the heart of the Dentelles de Montmirail

Le territoire de Suzette se développe sur un grand coteau viticole et boisé situé au cœur du site naturel des Dentelles de Montmirail (40km au nord d’Avignon). Ce site est à la fois l’un des pôles d’attraction touristique du département et le lieu d’une production viticole renommée (Gigondas, Vacqueyras, Beaumes de Venise, … ). Cet ensemble remarquable de terrasses viticoles et de crêtes rocheuses et boisées, forme un des paysages emblématiques du Vaucluse. La commune est actuellement soumise à une importante pression foncière due à une forte demande résidentielle. Le paysage du coteau forme et possède de ce fait un patrimoine culturel de valeur et une image de marque importante pour la production viticole locale.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

The effect of organic, biodynamic and conventional production processes on the intrinsic and perceived quality of a typical wine

AIM: The aim of this study was to evaluate the impact of the organic, biodynamic and conventional production processes on the typicality of the Chianti DOCG wine and the relation with the environmental impact in terms of CO2 production

Beyond colors of rosé wines: impact of origin and winemaking technology on their color, polyphenol and thiol compositions

Rosé wine consumption is rapidly increasing with its market share in France that has grown from 11 % to 32 % in less than 20 years. A recent trend is also to produce rosé wines with lighter colors. Varieties, terroir and technology certainly have an influence on rosé wine colors.

Use of the stics crop model as a tool to inform vineyard zonages

STICS est un modèle de culture développé à l’INRA (France) depuis 1996. Il simule les bilans de carbone, d’eau et d’azote dans le système culture-sol, piloté par des données climatiques journaliéres. Il calcule à la fois des variables agricoles (rendement en quantité et qualité) et environnementales (pertes en eau et en azote). Une des originalités de STICS est son adaptabilité à de nombreuses cultures (herbacées, ligneuses, annuelles, pérennes) rendue possible par le choix de paramètres génériques et d’options de formalismes. Le travail présenté traite, dans un premier temps, des spécificités de STICS pour la vigne en terme de bilan trophique, de fonctionnement énergétique et hydrique et d’estimation des teneurs en sucre en en eau du raisin. Nous montrons ensuite diverses sorties du modèle qui permettent de caractériser des terroirs du vignoble des Côtes du Rhône.