IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of the presence of anthocyanins on the interaction between wine phenolic compounds and high molecular weight salivary proteins

Effect of the presence of anthocyanins on the interaction between wine phenolic compounds and high molecular weight salivary proteins

Abstract

As a result of climate change consequences, there is a gap between the times at which the grapes reach the phenolic and the technology maturities. As a consequence, the wine sensory properties are affected and, among them, astringency, one of the most important organoleptic attributes for red wine quality. A balanced astringency is essential for quality wines, since when this sensation is perceived with high intensity, it is considered as unpleasant by consumers. The main mechanism described for the astringency development is the interaction of wine phenolic compounds, such as flavanols and flavonols, with salivary proline-rich proteins (PRPs), forming protein-flavanol complexes that can precipitate, resulting in a loss of lubrication in the oral cavity.Although PRPs are the main proteins studied to explain astringency, there are other types of proteins in saliva, such as mucins that are high molecular weight glycoproteins representing the main proteins in the salivary proteome. It has been reported that mucins can interact with wine flavanols, which could compromise the lubricating functions of mucins, so these proteins may play an important role in astringency sensation.1 Thus, it is important to go deeper into the study of the interactions of these proteins with wine phenolic compounds and the factors that could affect them to get new insight about the mechanisms of astringency sensation.Flavanols and flavonols are also involved in the stabilization of colored forms of malvidin-3-O-glucoside (Mv) through copigmentation effect. Moreover, it has been reported that some flavanol-anthocyanin mixtures present a synergic effect toward the interaction with PRPs when compared to individual polyphenols.2 Hence, the main aim of this work is to assess if the interaction between flavanols and flavonols and high molecular weight proteins is affected due to the involvement of these phenolic compounds in the copigmentation effect. To do this, ternary interactions involving Mv, two individual flavanols (catechin and epicatechin) and/or the flavonol quercetin-3-O-glucoside with mucin from bovine submaxillary glands have been studied by isothermal titration calorimetry (ITC).ITC results show that the studied interactions are driven by both hydrophobic interactions and H-bonds. Results show that mucin interact with the wine phenolic compounds assayed, confirming the possible role of mucins in astringency sensation due to the effect that this interaction may have on lubricating functions of these proteins. Moreover, the presence of anthocyanins in the mixtures affects the interaction between mucins and the phenolic compounds studied, which points out that anthocyanins could play an indirect role on astringency development ant that the whole wine phenolic composition should be considered when astringency sensation is studied.

References

(1) Brandão, E. et al. Molecular study of mucin-procyanidin interaction by fluorescence quenching and saturation transfer difference (STD)-NMR. Food Chem. 2017, 228, 427-434.
(2) Soares, S. et al. Effect of malvidin-3-glucoside and epicatechin interaction on Ttheir ability to interact with salivary proline-rich proteins. Food Chem. 2019, 276, 33–42.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Torres-Rochera Bárbara1, García-Estévez Ignacio1 and Esribano-Bailón Mará Teresa1

1Department of Analytical Chemistry, Nutrition and Food Sciences, Universidad de Salamanca

Contact the author

Keywords

astringency, copigmentation, wine phenolic compounds and ITC

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Sustainable agriculture and food innovation: preserving agrodiversity and advancing vineyard resilience in Madeira

The ISOPlexis – Center for Sustainable Agriculture and Food Technology, University of Madeira, is a research unit that develops activities in the fields of Sustainable Agriculture, Agri-food Technology and Bioeconomy, with focus on agrodiversity monitoring and phenotyping,

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production

Distribution of photosynthates towards the grapes: effects of leaf removal and cluster thinning applied before veraison in cv. Verdejo

The relationship between grape production and leaf surface is a highly debated aspect in terms of the impact it may have on the composition and quality of grapes, especially in areas that focus their cultivation on high-quality wine. In many occasions, the limitation of the unitary production level in these areas is claimed to be the main factor for achieving high quality levels in the wine, forgetting the importance of the source-sink relationship and other environmental factors and management of the canopy. Taking this consideration into account, this work seeks to know the response of the vine as a whole, and the individual shoot as well, to the application of various alternatives of leaves and clusters removal, carried out in the phase immediately before veraison, in cv. Verdejo, in Spain.

Macromolecular characterization of disease resistant red wine varieties (PIWI)

Pilzwiderstandsfähige (PIWI) are disease resistant Vitis vinifera interspecific hybrid varieties that are receiving increasing attention for ability to ripen in cool climates and their resistance to grapevine fungal diseases. Wines produced from these varieties have not been characterized, especially regarding their macromolecular composition. This study characterised and quantified colloid-forming molecules (proteins, polysaccharides and phenolics) of red PIWI wines produced in the UK. METHODS: In 2019 6 wines were made from the PIWI varieties Rondo, Cabernet Jura, Cabernet Cortis, Cabernet Noir, Regent and Cabertin grown at the Plumpton Rock Lodge Vineyard in Sussex (UK) and harvested at similar level of maturity (TSS, pH and TA). All juice was chaptalized to the same potential alcohol of 12%. Small scale winemaking (1L) was performed in quadruplicate using Bodum® coffee plungers to manage maceration [1]. Residual sugar content, pH, and titratable acidity were monitored during fermentation. For finished wines, the protein and polysaccharide content was measured by HPLC-SEC [2], while the total phenolic content was assessed using the Folin-Ciocalteau method [3]. The protein profile of the wines was further investigated by SDS-PAGE [4]. RESULTS: Fermentations (n=24) were all carried out to completion within 8 days.