WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Influence of cork density upon cork stopper resiliency after opening a sparkling wine bottle

Influence of cork density upon cork stopper resiliency after opening a sparkling wine bottle

Abstract

After Champagne popping, the first consumer’s observation is the shape of the cork stopper. Consumers expect a “mushroom shape”. Nevertheless, we sometimes observe a “barrel” shape due to inappropriate cork’s elastic properties. The aim of this study was to follow the loss of cork stopper resiliency during 26 months according to the density (d) of the cork in contact with the wine. 1680 disks were weighed + measured and divided in 6 density classes: High (H1 d= 0,19 g/cm3 – H2 d= 0,21 g/cm3), Medium (M, not studied) and Low (L1 d= 0,13 g/cm3 – L2 d= 0,14 g/cm3). Then, 138 technical cork stoppers were produced for each of the 4 studied groups. These corks consisted of an agglomerated natural cork granule body to which two natural cork disks were glued. A total of 552 bottles of sparkling wine were closed with these corks and open after 13, 19 and 26 months to follow cork resiliencies. Wine bottles were stored horizontally; thus, the external natural cork disks were in contact to the wine. During the 26 months of the study, highly significant differences (ANOVA) were observed between the resiliencies of H-corks and those of L-corks, whatever the time studied. The diameters of the L-corks were statistically higher than those of the H-corks. No significant differences were observed between L1 and L2 corks. At the opposite, differences were noted betweenThomas Salmon H1 and H2 at 19 and 26 months. This could be explained by the heterogeneity of the resiliency that was higher for H-corks than for L-corks. Finally, the corks were visually (12 judges) divided in 3 classes corresponding to high (expected mushroom shape, i.e high resiliency), medium (irregular shape of the disk in contact with the wine and/or low premature deterioration of the expected resiliency) and low qualities (barrel shape = premature deterioration of the resiliency). The corks were also divided in 3 categories corresponding to 0-33%, 34-66% and 67-100% resiliency. A strong correlation was noted between the visual and the instrumental categorizations. This study strongly evidenced 1) the importance of the cork density on the cork stopper behaviour when opening the bottle and 2) the interest of an instrumental approach reflecting the consumer’s perception.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Thomas Salmon, Jordi Rosello, Alexandre Marcoult, Chantal Prat, Richard Marchal

Presenting author

Thomas Salmon – University of Reims Champagne-Ardenne – University of Haute-Alsace

Francisco Oller S. A. Cassà de la Selva, Province of Girona, Spain | Oller & Cie – SIBEL, Reims, France | Francisco Oller S. A. Cassà de la Selva, Province of Girona, Spain | Laboratoire d’Oenologie, Université de Reims Champagne-Ardenne, Reims – Université de Haute-Alsace, Colmar, France, ,

Contact the author

Keywords

cork stopper, cork density, resiliency, sparkling wine, visual categorization

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

SAVOIR: A project promoting innovative and effective prophylactic methods in viticulture, as part of the governmental plan to anticipate the withdrawal of plant protection products in France (PARSADA)

Faced with the likely withdrawal of commercial specialities from use in the short to medium term, France has decided to implement an ambitious action plan to anticipate and avoid withdrawal without alternative solutions. The French wine industry (cniv and ifv) has been heavily involved in this action to define priorities. faced with the risk of the withdrawal of multi-site fungicides (folpel, dithianon, copper) coupled with the probable reduction in single-site fungicide solutions, mildew and black rot have been identified as the priority uses.

Electrochemical diversity of italian white wines

Analysis of phenolic compounds typically involve spectrophotometric methods as well as liquid chromatography combined with DAD, fluorimetric, or MS detection. However, the complexity of wine phenolic composition generated, in recent years, attention towards other analytical approaches, including those allowing rapid and inexpensive operations. Voltametric AIM Oxidation of white wine phenolics occurs at different stages during winemaking and storage and can have important implications for wine sensory quality. Phenolic compounds, in particular those with a ortho-diphenol moiety, are main target of oxidation in wine. Strategies for the methods are particularly suited for the analysis of oxidizable compounds such as phenolics. The redox-active species can be oxidized and reduced at the electrode, therefore, applications of electrochemistry have been developed both to quantify such species, and to probe wine maturation processes.3 The project on the diversity of Italian wines aims at collecting and analysing large-scale compositional dataset related to Italian white wines.

Zonazione e vitigni autoctoni nel sud della Basilicata: metodologie integrate per la caratterizzazione di ambienti di elezione di biotipi storici finalizzati a vini di territorio nella DOC “Terre dell’Alta Val d’Agri”

I territori della DOC “Terre dell’Alta Val d’Agri”, a Sud della regione Basilicata, si caratterizzano per una elevata biodiversità autoctona autoselezionatesi su ambienti ecologicamente ben definiti,

Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1]. Despite the mechanisms involved in wine oxidation have been extensively reviewed [2], the protection of wine against oxidative spoilage remains one of the main goals of winemaking.
SO2 is one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines.

What metabolomics teaches us about wine shelf life

The metabolomics era started about 22 years ago, and wine was one of the first foodstuff subjects of analysis and investigation by this technique.