WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Which heat test can realistically estimate white wine haze risk?

Which heat test can realistically estimate white wine haze risk?

Abstract

Different heat tests are used to predict the dose of bentonite necessary to prevent wine haze after bottling. The most used tests are 60-120 min. at 80°C. Nevertheless, there is a lack of information about the relationship between these tests and the turbidities observed in the bottles after the storage/transport of the wines in realistic conditions, when temperatures reach 35-42°C during 3-12 days.

In this study, 6 heat tests were applied on 14 Sauvignon wines (France) : 5-30-60 min. at 80°C and  30-60-120 min. at 50°C. The results were compared with the turbidity reached by the wines under real Summer conditions, i.e temperatures corresponding to heat waves (35 to 46°C, from 1 to 14 days) and representing 6 tests too. The 66 Pearson correlation coefficients (PCC) were calculated for all of these 12 heat tests when compared two by two.

The turbidities of the wines subjected to Summer temperature conditions (1 day at 35°C, 4 days at 35°C, 4 days at 35°C + 1 day at 43°C) were highly correlated with the turbidities developed by the Sauvignon wines after heating 30 or 60 min.  at 50°C. The PCC were between 0.980 and 0.989. The higher PCC were observed between Summer realistic conditions and a heat test during 120 min. at 50°C with PCC values between 0.993 and 0.997. The PCC between Summer heatings and a heat test during 60 min. at 80°C were interesting (0.911-0.924) but not so high.

Beyond these relationships, it is essential for a winemaker to consider the turbidity reached by the wine after a heat test. The problem is that turbidities observed for a wine after different heat tests can reach 2, 8 and 34 NTU when the wine was heated a 4 days at 35°C+ 1 day at 43°C, 2hrs at 50°C and 1hr at 80°C respectively. In these conditions, it is very problematic to decide what is the correct dose of bentonite to ensure a complete colloidal stability with time of the wine.

Proteins implicated in the white wine haze are essentially thaumatin-like proteins (TLPs) and chitinases whose temperatures of denaturation are around 55°C and 62°C respectively. It explains why the heat tests at 80°C, even if correlated with realistic tests give excessively high values when compared with what can happen to a wine during a hot Summer. This leads the winemaker to use excessive bentonite doses given stripped wines whilst lower doses could be sufficient to ensure the absence of haze in the bottle.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

RICHARD MARCHAL, Thomas Salmon, Marine Lecomte, Bertrand Robillard

Presenting author

RICHARD MARCHAL – University of Reims Champagne-Ardenne – University of Haute-Alsace

University of Reims Champagne-Ardenne – University of Haute-Alsace | University of Reims Champagne-Ardenne – University of Haute-Alsace | Institut Oenologique de Champagne

Contact the author

Keywords

Haze risk, protein, white wine, Sauvignon, Gewurztraminer

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

The use of elicitors in the vineyard to mitigate the effects of climate change on wine quality

The wine sector is being directly affected by climate change. Temperatures above 30ºC can cause a lag between the ripening of the berry pulp (a rapid increase in sugar content) and the skin

Corvina berry morphology and grape composition as affected by two training system (Pergola and Guyot) in a context of climate change scenario

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes. The main cultivars used for these wines are Corvina and Corvinone. In this Region hundreds of years ago a particular training system (Pergola, cordon/cane with horizontal shoot-positioning) was developed. In the last 20 years the Guyot have been introduced in the area; now Pergola and Guyot are equally widespread in the Valpolicella area. In two different environmental conditions (hill and floodplain) two vineyards, one for each type of training system, were studied along two years (2011-2012).

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain.

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.