WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Which heat test can realistically estimate white wine haze risk?

Which heat test can realistically estimate white wine haze risk?

Abstract

Different heat tests are used to predict the dose of bentonite necessary to prevent wine haze after bottling. The most used tests are 60-120 min. at 80°C. Nevertheless, there is a lack of information about the relationship between these tests and the turbidities observed in the bottles after the storage/transport of the wines in realistic conditions, when temperatures reach 35-42°C during 3-12 days.

In this study, 6 heat tests were applied on 14 Sauvignon wines (France) : 5-30-60 min. at 80°C and  30-60-120 min. at 50°C. The results were compared with the turbidity reached by the wines under real Summer conditions, i.e temperatures corresponding to heat waves (35 to 46°C, from 1 to 14 days) and representing 6 tests too. The 66 Pearson correlation coefficients (PCC) were calculated for all of these 12 heat tests when compared two by two.

The turbidities of the wines subjected to Summer temperature conditions (1 day at 35°C, 4 days at 35°C, 4 days at 35°C + 1 day at 43°C) were highly correlated with the turbidities developed by the Sauvignon wines after heating 30 or 60 min.  at 50°C. The PCC were between 0.980 and 0.989. The higher PCC were observed between Summer realistic conditions and a heat test during 120 min. at 50°C with PCC values between 0.993 and 0.997. The PCC between Summer heatings and a heat test during 60 min. at 80°C were interesting (0.911-0.924) but not so high.

Beyond these relationships, it is essential for a winemaker to consider the turbidity reached by the wine after a heat test. The problem is that turbidities observed for a wine after different heat tests can reach 2, 8 and 34 NTU when the wine was heated a 4 days at 35°C+ 1 day at 43°C, 2hrs at 50°C and 1hr at 80°C respectively. In these conditions, it is very problematic to decide what is the correct dose of bentonite to ensure a complete colloidal stability with time of the wine.

Proteins implicated in the white wine haze are essentially thaumatin-like proteins (TLPs) and chitinases whose temperatures of denaturation are around 55°C and 62°C respectively. It explains why the heat tests at 80°C, even if correlated with realistic tests give excessively high values when compared with what can happen to a wine during a hot Summer. This leads the winemaker to use excessive bentonite doses given stripped wines whilst lower doses could be sufficient to ensure the absence of haze in the bottle.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

RICHARD MARCHAL, Thomas Salmon, Marine Lecomte, Bertrand Robillard

Presenting author

RICHARD MARCHAL – University of Reims Champagne-Ardenne – University of Haute-Alsace

University of Reims Champagne-Ardenne – University of Haute-Alsace | University of Reims Champagne-Ardenne – University of Haute-Alsace | Institut Oenologique de Champagne

Contact the author

Keywords

Haze risk, protein, white wine, Sauvignon, Gewurztraminer

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Temperature effects on the biosynthesis of aroma compounds in glera grapes

This paper describes the first year results of a study that investigated the effects of altitude and related temperature parameters on the biosynthesis of aromas in the Italian cultivar Glera.

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity.

Evolution of oak barrels C-glucosidic ellagitannins

During oak wood contact, wine undergoes important modifications that modulate its organoleptic quality and complexity, including its aroma, structure, astringency, bitterness and color. Vescalagin and castalagin are the two main C-glucosidic ellagitannins found in oak wood used for wine aging wood but lyxose/xylose derivatives (grandinin and roburin e) and dimeric forms (roburins a,b, c and d) are also present. The presence of several hydroxyl groups in the ortho-positions at the periphery of the structure of the ellagitannin isomers allows these molecules to undergo oxidation or condensation reactions with other compounds.

First large-scale study of thiol precursor distribution in red grape berry compartments and implications for thiol-type red wine production

Climate change and the growing need to reduce the use of phytosanitary products demand the exploration of disease-resistant grape varieties and/or adapted to drought conditions.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.