WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Which heat test can realistically estimate white wine haze risk?

Which heat test can realistically estimate white wine haze risk?

Abstract

Different heat tests are used to predict the dose of bentonite necessary to prevent wine haze after bottling. The most used tests are 60-120 min. at 80°C. Nevertheless, there is a lack of information about the relationship between these tests and the turbidities observed in the bottles after the storage/transport of the wines in realistic conditions, when temperatures reach 35-42°C during 3-12 days.

In this study, 6 heat tests were applied on 14 Sauvignon wines (France) : 5-30-60 min. at 80°C and  30-60-120 min. at 50°C. The results were compared with the turbidity reached by the wines under real Summer conditions, i.e temperatures corresponding to heat waves (35 to 46°C, from 1 to 14 days) and representing 6 tests too. The 66 Pearson correlation coefficients (PCC) were calculated for all of these 12 heat tests when compared two by two.

The turbidities of the wines subjected to Summer temperature conditions (1 day at 35°C, 4 days at 35°C, 4 days at 35°C + 1 day at 43°C) were highly correlated with the turbidities developed by the Sauvignon wines after heating 30 or 60 min.  at 50°C. The PCC were between 0.980 and 0.989. The higher PCC were observed between Summer realistic conditions and a heat test during 120 min. at 50°C with PCC values between 0.993 and 0.997. The PCC between Summer heatings and a heat test during 60 min. at 80°C were interesting (0.911-0.924) but not so high.

Beyond these relationships, it is essential for a winemaker to consider the turbidity reached by the wine after a heat test. The problem is that turbidities observed for a wine after different heat tests can reach 2, 8 and 34 NTU when the wine was heated a 4 days at 35°C+ 1 day at 43°C, 2hrs at 50°C and 1hr at 80°C respectively. In these conditions, it is very problematic to decide what is the correct dose of bentonite to ensure a complete colloidal stability with time of the wine.

Proteins implicated in the white wine haze are essentially thaumatin-like proteins (TLPs) and chitinases whose temperatures of denaturation are around 55°C and 62°C respectively. It explains why the heat tests at 80°C, even if correlated with realistic tests give excessively high values when compared with what can happen to a wine during a hot Summer. This leads the winemaker to use excessive bentonite doses given stripped wines whilst lower doses could be sufficient to ensure the absence of haze in the bottle.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

RICHARD MARCHAL, Thomas Salmon, Marine Lecomte, Bertrand Robillard

Presenting author

RICHARD MARCHAL – University of Reims Champagne-Ardenne – University of Haute-Alsace

University of Reims Champagne-Ardenne – University of Haute-Alsace | University of Reims Champagne-Ardenne – University of Haute-Alsace | Institut Oenologique de Champagne

Contact the author

Keywords

Haze risk, protein, white wine, Sauvignon, Gewurztraminer

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Rotundone is the main aroma compound responsible for peppery notes in wines whose biosynthesis is negatively affected by heat and drought. Through the alteration of precipitation regime and the increase in temperature during maturation, climate change is expected to affect wine peppery typicality. In this context there is a demand for developing sustainable viticultural strategies to enhance rotundone accumulation or limit its degradation. It was recently proposed that ultraviolet (UV) radiations could stimulate rotundone production. The aim of this study was to investigate under field trial conditions the impact of grape exposure and UV treatments on rotundone in Vitis vinifera L. Tardif, an almost extinct grape variety from south-west France that can express particularly high rotundone levels. Four different treatments were compared in 2021 to a control treatment using a randomised complete block design with three replications per treatment. Grape exposure was manipulated through early or late defoliation. Leaf and laterals shoots were removed at Eichorn Lorenz growth stages 32 or 34 on the morning-sun side of the canopy. During grape maturation, UV radiations were either reduced by 99% by installing UV radiation-shielding sheets, or applied four times using the Boxilumix™ non thermal device (Asclepios Tech, Tournefeuille) with the aim of activating plant signalling pathway. Loggers displayed in solar radiation shields were used to assess the effect of such shielding sheets on air temperature within the bunch zone. The composition of grapes subjected to these treatments will be soon analysed for their rotundone content and basic classical laboratory analyses. Grapes will be harvested to elaborate wines under standardized small-scale vinification conditions (60kg) that will be assessed by a trained sensory panel.

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

Impact of pruning method on vegetative growth and yield

Over the past fifteen years or so, a number of theories have emerged on more or less new pruning practices.

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).