WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Which heat test can realistically estimate white wine haze risk?

Which heat test can realistically estimate white wine haze risk?

Abstract

Different heat tests are used to predict the dose of bentonite necessary to prevent wine haze after bottling. The most used tests are 60-120 min. at 80°C. Nevertheless, there is a lack of information about the relationship between these tests and the turbidities observed in the bottles after the storage/transport of the wines in realistic conditions, when temperatures reach 35-42°C during 3-12 days.

In this study, 6 heat tests were applied on 14 Sauvignon wines (France) : 5-30-60 min. at 80°C and  30-60-120 min. at 50°C. The results were compared with the turbidity reached by the wines under real Summer conditions, i.e temperatures corresponding to heat waves (35 to 46°C, from 1 to 14 days) and representing 6 tests too. The 66 Pearson correlation coefficients (PCC) were calculated for all of these 12 heat tests when compared two by two.

The turbidities of the wines subjected to Summer temperature conditions (1 day at 35°C, 4 days at 35°C, 4 days at 35°C + 1 day at 43°C) were highly correlated with the turbidities developed by the Sauvignon wines after heating 30 or 60 min.  at 50°C. The PCC were between 0.980 and 0.989. The higher PCC were observed between Summer realistic conditions and a heat test during 120 min. at 50°C with PCC values between 0.993 and 0.997. The PCC between Summer heatings and a heat test during 60 min. at 80°C were interesting (0.911-0.924) but not so high.

Beyond these relationships, it is essential for a winemaker to consider the turbidity reached by the wine after a heat test. The problem is that turbidities observed for a wine after different heat tests can reach 2, 8 and 34 NTU when the wine was heated a 4 days at 35°C+ 1 day at 43°C, 2hrs at 50°C and 1hr at 80°C respectively. In these conditions, it is very problematic to decide what is the correct dose of bentonite to ensure a complete colloidal stability with time of the wine.

Proteins implicated in the white wine haze are essentially thaumatin-like proteins (TLPs) and chitinases whose temperatures of denaturation are around 55°C and 62°C respectively. It explains why the heat tests at 80°C, even if correlated with realistic tests give excessively high values when compared with what can happen to a wine during a hot Summer. This leads the winemaker to use excessive bentonite doses given stripped wines whilst lower doses could be sufficient to ensure the absence of haze in the bottle.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

RICHARD MARCHAL, Thomas Salmon, Marine Lecomte, Bertrand Robillard

Presenting author

RICHARD MARCHAL – University of Reims Champagne-Ardenne – University of Haute-Alsace

University of Reims Champagne-Ardenne – University of Haute-Alsace | University of Reims Champagne-Ardenne – University of Haute-Alsace | Institut Oenologique de Champagne

Contact the author

Keywords

Haze risk, protein, white wine, Sauvignon, Gewurztraminer

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Towards stopping pesticides: survey identification of on-farm solutions

The winegrowing sector consumes a lot of pesticides. Changes in vineyard are necessary in order to reduce or even stop using pesticides, and thus limit their harmful impacts on health and on environment. To answer these issues, the VITAE project (2021-2026) aims at designing pesticide free grapevine systems in France. For that, we take an interest in the vineyards using solutions to strongly reduce chemicals but also biopesticides. We assume that such vineyards exist and that they are implementing solutions that could inspire the design of free- pesticide system.

The influence of soil management practices on functional traits and biodiversity of weed communities in Swiss vineyards

Green cover in vine rows provides many ecological services, but can also negatively impact the crop, depending on the weed species. The composition of a vineyard weed community is influenced by many parameters. Ensuring an evolution of the vine row flora into a desired direction is therefore very complex. A key step towards this goal is to know which factors influence the establishment of the weed community and which types of communities are best suited for vineyards. In this study, we analysed the weed communities of several vineyards in the Lake Geneva region (379 botanical surveys on 117 plots), with the aim to highlight the links between soil management practices (chemical and mechanical weeding, mowing, mulching roll) and phytosociological profiles, biodiversity and selected functional traits (growth forms, life strategies, root depth). T

Effets des pratiques agro-viticoles sur l’activité biologique et la matière organique des sols : exemples en Champagne et en Bourgogne

The notion of terroir covers multiple components, from geology, pedology, geomorphology and climatology (Doledec, 1995), to aspects that are less well identified but which also intervene in the “typicality” of wines. This justifies the “zoning” approach (Moncomble and Panigaï, 1990) to define homogeneous areas, under the same agro-viticultural management and also identified at the product level (Morlat and Asselin, 1992).

Red wines from southwest France, Lebanon and South Korea: study of phenolic composition and antioxidant and biological activities according to grape varieties and winemaking processes

The phenolic compounds present in the wine are responsible for reducing the risk of developing chronic diseases (cardiovascular, cancer, diabetes, Alzheimer …) because of their antioxidant activities and the presence of nutraceutical molecules with targeted biological activities. Polyphenols not only contribute to the “French paradox” but also contribute to give the wine its color, structure, aroma and allow a long-term preservation.

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].