Terroir 2006 banner
IVES 9 IVES Conference Series 9 Pedological criteria according to the French hierarchy of vintages, Appellations d’Origine Contrôlée (AOC): study of two toposequences located in the Burgundian “Côte”

Pedological criteria according to the French hierarchy of vintages, Appellations d’Origine Contrôlée (AOC): study of two toposequences located in the Burgundian “Côte”

Abstract

The concept of terroir is defined by a set of natural and human factors. On the slopy vineyards of the Burgundian « Côte », the « Appellations d’Origine Contrôlée (AOC) » spread out according to the slope in their order of quality : « AOC Grand Cru » at the top, « AOC Premier Cru » and « AOC Village » and « Bourgogne » on the piemont. In order to correlate the hierarchy of the vintages with the evolution of the topographic and pedological criteria, two toposequences were studied, in Gevrey Chambertin (« Côte de Nuits ») and Aloxe Corton (« Côte de Beaune »). Each profile was described according to STIPA 2000 guidelines, and was sampled for micro-morphological observations and physicochemical analyses. Such division of the vineyard expresses the character of the wines, according to two different lithologies, on which rendosols are established on the top of the flanks : hard limestones of Bathonian (« Côte de Nuits ») and marls of Oxfordian (« Côte de Beaune »). The soils on marls are less coloured and more calcareous than the others. On the slope and piemont, deeper, more or less calcareous soils develop on colluvial and others weathered materials. The permeability of the soils, which depends on the stoniness and the texture, is higher upstream than downstream. If the permeability is a prevailing factor in the classification of the AOC, the chemical factors have a more shaded impact : the total limestone content is maximal on the top of toposequences on the « AOC Grand Cru »; organic matter content tends to decrease downsteam, whereas the soil CEC is higher in the piemont.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Jean LEVEQUE, Edith TOULEMONDE and Francis ANDREUX

UMR INRA 1229 Microbiologie et Géochimie des Sols, Centre des Sciences de la Terre,
Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France

Contact the author

Keywords

terroir, AOC, hierarchy, toposequence, permeability

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .

La viticoltura veneta in un contesto di città e industria diffusa: per una lettura integrale del paesaggio della collina pedemontana veronese orientale

l Veneto, come è noto, rappresenta una delle estensioni di superfici a vigneto più importanti in Italia e nell’Europa stessa. Il paesaggio viticolo fino ad oggi è stato ampiamente letto nelle sue componenti

Quali cantine perle strade del vino

Tutte le cantine possono aprirsi al pubblico? Evidentemente si, nessuno può impedire ad un produttore di accogliere i turisti.
Tutte le cantine possono far parte delle Strade del vino? No, perché la Strada del vino mette in gioco la reputazione della denominazione di origine alla quale è legata e le possibilità di sviluppo economico di un intero territorio.

Enhancing grapevine transformation and regeneration: A novel approach using developmental regulators and BeYDV-mediated expression

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering crispr/cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate.

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.