WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Abstract

Sulfites (SO2) addition during winemaking is a widespread practice worldwide. This addition is realized at different steps of the winemaking due to the antimicrobial and antioxidant capacity of SO2. In a context of understanding white wines oxidative stability, knowledge about the impact of SO2 on the wine molecular diversity, especially compounds involved in the antioxidant capacity of wine, appears to be very important. In recent years, some studies have shown that SO2 can react with a large number of wine compounds resulting in the formation of numerous adducts. The diversity of compounds involved is important including in particular pyruvic acid, 2-keto-glutaric acid, glyceraldehyde, sugar, phenolics compounds but also amino acids or peptides. Moreover Roullier-Gall et al. have shown using FT-ICR-MS analysis that the molecular composition of wines remains impacted by addition of SO2 to the must (0, 4 and 8 g/hL SO2), several years after winemaking. Indeed, wines made from protected must (8g/hL SO2) contain a larger diversity of CHOS and CHONS compounds than wines made from unprotected must (0 g/hL SO2). The study of the impact of glutathione addition on the sensory oxidative stability has further shown that CHOS and CHONS compounds (amino acids, aromatic compounds and peptides) are markers of the antioxidant metabolome of white wines. This suggests that CHOS and CHONS compounds arise from SO2 adducts formation but also from a protecting effect of SO2 on the antioxidant metabolome of white wines.

In this context, the aim of the present study was to compare the impact of SO2 addition and hyperoxygenation on the oxidative stability of wines, through complementary antioxidant capacity (DPPH) measurements and molecular diversity determined by targeted and untargeted analysis. 4 modalities were analyzed for two vintages (2017, 2018). Wines were analyzed during first months of barrel aging and several years after bottling (minimal aging of 3 years). Results showed that regardless of the vintage, wines from musts protected by 8 g/hL had a better antioxidant capacity compared to wines from hyperoxygenated must. Wines from protected must were also richer in phenolic compounds compared to the hyperoxygenated modality. Metabolomics analysis (LC-QToF-MS) confirmed that wines from protected must contained a diversity of peptides containing the Cysteine amino acid in their sequence, which can be involved in the antioxidant capacity of wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Remy Romanet, Laurence Noret, Julie Caiveau, Antoine Michaud-Veber, Régis Gougeon, Maria Nikolantonaki

Presenting author

Remy Romanet – UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 21000 Dijon, France

UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 21000 Dijon, France | UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 21000 Dijon, France | UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 21000 Dijon, France | UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 21000 Dijon, France | UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 21000 Dijon, France,

Contact the author

Keywords

Sulfites – Oxidative stability – Chardonnay – Hyperoxygenation – LC-QToF-MS

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Influence of short-time skin maceration combined with enzyme treatment on the volatile composition of musts from fresh and withered fiano winegrapes

AIM: The increasing market competitiveness is promoting the production of special dry wines with distinctive characteristics, obtained either from minor winegrape varieties and/or the inclusion of partially dehydrated grapes.

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production

Wine ageing: Managing wood contact time.

Barrel ageing is a transformative process that alters a wine’s organoleptic properties and consequently its price. Even though it is considered beneficial mostly for red wines, ageing can also be used for white wines but for shorter time periods. Due to barrel costs, space requirements and the markets’ demands for fast release of each new vintage, new products such as oak chips or shavings have been developed to help minimize the time needed for the extraction of essential wood compounds.

Focus on terroir studies in the eger wine region of Hungary

In 2001, the Hungarian Ministry of Agriculture and Rural Development designated the Institute of Geodesy, Cartography and Remote Sensing (FÖMI) to elaborate a Geographic Information System (GIS) supported Vineyard Register (VINGIS) in Hungary. The basis of this work was a qualification methodology (vineyard and wine cellar cadastre system) dating back to several decades, however, in the 1980s and 1990s the available geographical maps and information technology did not provide enough accuracy for an overall evaluation of viticultural areas. The reason for the VINGIS elaboration and development was an obligation resulting from the EU membership to ensure the agricultural subsidies for the wine–viticulture sector.