WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Impact of the maturity and the duration of maceration on phenolic composition and sensorial quality of Divico wines

Impact of the maturity and the duration of maceration on phenolic composition and sensorial quality of Divico wines


Following its approval in 2013 by Agroscope, Divico became the first interspecific grape variety in Switzerland with high resistance to downy mildew (Plasmopara viticola) and grey rot (Botrytis cinerea), and medium resistance to powdery mildew (Uncinula nectator). Extremely riche in color, Divico grapes showed great enological potential to different styles of wine. Quickly, many wine growers were interested in planting this promising variety. Many of its potential are to be explored in the coming years.

The objective of this study is to evaluate the impact of the harvest date and the duration of maceration on phenolic composition and sensorial quality of Divico red wines. During two consecutive vintages, 2019 and 2020, Divico grapes grown on two terroirs in Switzerland, Pully and Leytron, were harvested at commercial maturity (1st maturity) and 2-3 weeks later (2nd maturity). Two wine making processes with 6 days and 13 days maceration duration were applied to the same grapes. Grape and wine phenolic composition analyses were conducted during maturation, during wine making and after bottling. Sensorial analyses were conducted only after bottling.

Divico wines obtained were riche in phenolic compounds. Total polyphenol index with DO280nm were higher than 100. The concentrations of proanthocyanidins in obtained Divico wines varies from 3-5 g/L. 13 days maceration wines presented higher concentration of proanthocyanidins due to extra extraction of seed tannins. The values for anthocyanins were close to 3 g/L. Wines obtained with the 2nd maturity grapes and with 6 days maceration were preferred for higher fruity intensity, less acidity, more velvet tannins and better mouth equilibrium. 13 days maceration wines presented more aggressive tannins and bitterness in mouth. These results indicated that Divico grapes probably didn’t reach the optimum seed phenolic maturity even for the 2nd harvest day. Moreover, aroma management during prolonged maceration should be mastered if this practice is desired.


Publication date: June 27, 2022

Issue: WAC 2022

Type: Article


Liming ZENG, Marie Blackford, Ágnes Dienes-Nagy, Valentin Schwertz, Damien Simone,Jean-Laurent Spring, Gilles Bourdin, Fabrice Lorenzini, Benoit Bach

Presenting author

Liming ZENG – Changins-Haute École de Viticulture et Oenologie, HES-SO, Nyon, Suisse

Changins, Agroscope, Ágnes Dienes-Nagy | Agroscope, 1260 Nyon, Suisse | Changins-Haute École de Viticulture et Oenologie, HES-SO, Nyon, Suisse | Changins-Haute École de Viticulture et Oenologie, HES-SO, Nyon, Suisse | Agroscope, 1260 Nyon, Suisse | Agroscope, 1260 Nyon, Suisse | Agroscope, 1260 Nyon, Suisse| Changins-Haute École de Viticulture et Oenologie, HES-SO, Nyon, Suisse, ,

Contact the author


Divico wines-phenolic composition-sensorial quality-harvest date-maceration duration


IVES Conference Series | WAC 2022


Related articles…

Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Under-vine (UV) management has traditionally consisted of synthetic herbicide use to limit competition between weeds and grapevines. With growing global interest towards non-synthetic chemical use, this study aimed to capture the effects of alternative UV management at two commercial Shiraz vineyards in South Australia, where the sole management variables were UV management since 2016. In adjacent treatment blocks, cultivation (CU) was compared to spontaneous vegetation (SV) in McLaren Vale (MV), and herbicide was compared to SV in Eden Valley (EV). Soil water infiltration rates were slower and grapevine stem water potential was lower in CU compared to SV in MV, with the latter having a plant community dominated by soursob (Oxalis pes-caprae) during winter; while in EV, there was little separation between the treatments. Yields were affected at both sites, with SV being higher in MV and HE being higher in EV. In MV, the only effect on grape must was a lower 13C:12C isotope ratio in CU, indicating greater grapevine water stress. In the grape must at EV, SV had higher total soluble solids, total phenolics, anthocyanins, and yeast available nitrogen; and lower pH and titratable acidity. Pruning weights were not affected by the treatments in MV, while they were higher in HE at EV. Assessments revealed that the differing soil types at the two sites were likely the main determinants of the opposing production outcomes associated with UV management. In the silty loam soil of MV, the higher yields in SV were likely due to more plant-available water, as a potential result of the continuous soil bio-pores formed by winter UV vegetation. Conversely, in the loamy sand soils of EV with a lower cation exchange capacity, the lower yields and pruning weights in SV suggest the UV vegetation competed significantly with the grapevines for available water and nutrients.

Genotype-environment interaction of three cultivars of vitis vinifera L. cultivated in two different environments of the Ischia island: effect on production and quality; aspects of the quality of the obtained wines

Pendant une période de trois années le comportement productif et qualitatif de trois cépages tous indigènes de la région de Campania (Italie méridionale) dans deux terroirs de l’île d’Ischia a été étudié; ceci pour obtenir quelques indications préliminaires sur le comportement productif et qualitatif des cépages et sur la qualité des vins.

Wine archeochemistry: a multiplatform analytical approach to chemically profile shipwreck wines

The Cape of Storms (also known as Cape of Good Hope) is renowned for harbouring a multitude of shipwrecks due to the inherent treacherous coastline and blistering storms.

Vine responses to two irrigation systems in the region of Vinhos Verdes

In this work we try to know the influence of two irrigation systems (Drip and Micro – jet ) with the same levels of water applied in an experimental vineyard in the region of Felgueiras.


Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses chemical
fingerprints, which require advanced tools such as high-resolution mass spectrometry and multidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.