WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Impact of the maturity and the duration of maceration on phenolic composition and sensorial quality of Divico wines

Impact of the maturity and the duration of maceration on phenolic composition and sensorial quality of Divico wines

Abstract

Following its approval in 2013 by Agroscope, Divico became the first interspecific grape variety in Switzerland with high resistance to downy mildew (Plasmopara viticola) and grey rot (Botrytis cinerea), and medium resistance to powdery mildew (Uncinula nectator). Extremely riche in color, Divico grapes showed great enological potential to different styles of wine. Quickly, many wine growers were interested in planting this promising variety. Many of its potential are to be explored in the coming years.

The objective of this study is to evaluate the impact of the harvest date and the duration of maceration on phenolic composition and sensorial quality of Divico red wines. During two consecutive vintages, 2019 and 2020, Divico grapes grown on two terroirs in Switzerland, Pully and Leytron, were harvested at commercial maturity (1st maturity) and 2-3 weeks later (2nd maturity). Two wine making processes with 6 days and 13 days maceration duration were applied to the same grapes. Grape and wine phenolic composition analyses were conducted during maturation, during wine making and after bottling. Sensorial analyses were conducted only after bottling.

Divico wines obtained were riche in phenolic compounds. Total polyphenol index with DO280nm were higher than 100. The concentrations of proanthocyanidins in obtained Divico wines varies from 3-5 g/L. 13 days maceration wines presented higher concentration of proanthocyanidins due to extra extraction of seed tannins. The values for anthocyanins were close to 3 g/L. Wines obtained with the 2nd maturity grapes and with 6 days maceration were preferred for higher fruity intensity, less acidity, more velvet tannins and better mouth equilibrium. 13 days maceration wines presented more aggressive tannins and bitterness in mouth. These results indicated that Divico grapes probably didn’t reach the optimum seed phenolic maturity even for the 2nd harvest day. Moreover, aroma management during prolonged maceration should be mastered if this practice is desired.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Liming ZENG, Marie Blackford, Ágnes Dienes-Nagy, Valentin Schwertz, Damien Simone,Jean-Laurent Spring, Gilles Bourdin, Fabrice Lorenzini, Benoit Bach

Presenting author

Liming ZENG – Changins-Haute École de Viticulture et Oenologie, HES-SO, Nyon, Suisse

Changins, Agroscope, Ágnes Dienes-Nagy | Agroscope, 1260 Nyon, Suisse | Changins-Haute École de Viticulture et Oenologie, HES-SO, Nyon, Suisse | Changins-Haute École de Viticulture et Oenologie, HES-SO, Nyon, Suisse | Agroscope, 1260 Nyon, Suisse | Agroscope, 1260 Nyon, Suisse | Agroscope, 1260 Nyon, Suisse| Changins-Haute École de Viticulture et Oenologie, HES-SO, Nyon, Suisse, ,

Contact the author

Keywords

Divico wines-phenolic composition-sensorial quality-harvest date-maceration duration

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and mineralogy, rock fragments, bulk density, and porosity.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Climate projections over France wine-growing region and its potential impact on phenology

Climate change represents a major challenge for the French wine industry. Climatic conditions in French vineyards have already changed and will continue to evolve. One of the notable effects on grapevine is the advancing growing season. The aim of this study is to characterise the evolution of agroclimatic indicators (Huglin index, number of hot days, mean temperature, cumulative rainfall and number of rainy days during the growing season) at French wine-growing regions scale between 1980 and 2019 using gridded data (8 km resolution, SAFRAN) and for the middle of the 21th century (2046-2065) with 21 GCMs statistically debiased and downscaled at 8 km. A set of three phenological models were used to simulate the budburst (BRIN, Smoothed-Utah), flowering, veraison and theoretical maturity (GFV and GSR) stages for two grape varieties (Chardonnay and Cabernet-Sauvignon) over the whole period studied. All the French wine-growing regions show an increase in both temperatures during the growing season and Huglin index. This increase is accompanied by an advance in the simulated flowering (+3 to +9 days), veraison (+6 to +13 days) and theoretical maturity (+6 to +16 days) stages, which are more noticeable in the north-eastern part of France. The climate projections unanimously show, for all the GCMs considered, a clear increase in the Huglin index (+662 to 771 °C.days compared to the 1980-1999 period) and in the number of hot days (+5.6 to 22.6 days) in all the wine regions studied. Regarding rainfall, the expected evolution remains very uncertain due to the heterogeneity of the climates simulated by the 21 models. Only 4 regions out of 21 have a significant decrease in the number of rainy days during the growing season. The two budburst models show a strong divergence in the evolution of this stage with an average difference of 18 days between the two models on all grapevine regions. The theoretical maturity is the most impacted stage with a potential advance between 40 and 23 days according to wine-growing regions.

Litchi tomato as a fumigation alternative in Washington state wine grape vineyards

The northern root-knot nematode (Meloidogyne hapla) is one of the most prevalent plant-parasitic nematodes affecting Washington State Vitis vinifera vineyards. This nematode induces small galls on roots, restricting water and nutrient uptake. In new vineyards this can impede establishment. In existing vineyards, it can exacerbate decline in chronically stressed vines. While preplant fumigation is a common strategy for M. hapla management, its efficacy is temporary and relies on broad-spectrum chemicals that undergo frequent regulatory scrutiny. The trap crop litchi tomato (Solanum sisymbriifolium) showed promise in reducing plant-parasitic nematode densities in potato. This prompted field greenhouse experiments to evaluate its potential to reduce M. hapla in V. vinifera.

Zonage et caractérisation des terroirs de l’AOC Côtes-du-Rhône: exemple du bassin de Nyons-Valreas

The southern Côtes-du-Rhône vineyard shows a significant variety of ecological facets over the Lower Rhone Valley. Intending to characterize such a variety of “terroir “called vineyard situations, a spatial approach based on identification of soil landscapes has been initiated.