WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Aroma diversity of Amarone commercial wines

Aroma diversity of Amarone commercial wines

Abstract

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release. The present work aims at characterizing the aroma composition of Amarone and to elucidate the relationships between chemical composition and sensory characters. Two sets of Amarone wines from different vintages 2015 (17 wines) and 2016 (15 wines) were analyzed. The analyses were carried out by means of Gas Chromatography-Mass Spectrometry (GC-MS) and extracted by Solid Phase Extraction (SPE) and Solid Phase Micro Extraction (SPME). In addition, the sampled wines were subjected to a sensory evaluation in the form of sorting task. From both data sets, 70 volatile compounds were successfully identified and quantified, 30 of which were present in concentrations above their odor thresholds in all the samples. Using the odor activity value (OAV), the compounds that potentially contribute to Amarone perceived aroma are β-damascenone, ethyl and isoamyl acetate, ethyl esters (hexanoate, octanoate, butanoate, 3-methybutanoate), 4-ethyl guaiacol, 3-methylbutanoic acid, dimethyl sulfide (DMS), eugenol, massoia lactone, 1,4-cineol, TDN, cis-whisky lactone. The only differences found between the two vintages’ OAV list, could be observed in the presence of dimethyl trisulfide (DMTS) in the vintage 2015; whereas in the 2016 set γ-nonalactone and trans-whisky lactone were found. Regarding the compounds that impart the most differences across both vintages, OAV max/min, where 4- ethyl phenol, 4-ethyl guaiacol, 1,8-cineole, 1,4-cineole, dimethyl sulfide (DMS). Results from the sorting task sensory analysis of the 17 wines from vintage 2015 showed three clusters formed. Cluster 1 composed of eight wines and described as “red fruit”, “solvent” and “sweet spices”. Cluster 2 formed by four Amarone was associated mainly with the “animal” and “oak/toasted” attributes. And cluster 3 (five wines) described with the attribute “cooked fruit”. While in the sorting task of vintage 2016 (15 wines) two vintages coming from different wineries . Moreover, from the volatiles analyzed, compounds such as dimethyl sulfide (DMS) and cineoles have been singled out as potential aroma markers of diversity in Amarone wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Jessica Anahi Samaniego Solis, Maurizio, Ugliano, Davide, Slaghenaufi, Giovanni, Luzzin

Presenting author

Jessica Anahi Samaniego Solis – University of Verona

University of Verona | University of Verona | University of Verona

Contact the author

Keywords

Amarone – grape withering – Corvina – Corvinone

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Characterization and application of silicon carbide (SiC) membranes to oenology

After fermentations, the crude wine is a turbid medium not accepted by the consumer therefore, it needs to be filtered

Modélisation du régime thermique des sols de vignoble du Val de Loire : relations avec des variables utilisables pour la caractérisation des terroirs

Temperature has a decisive influence on the growth and development of plants (Carbonneau et al., 1992). In particular, in the case of the vine, the temperature is an omnipresent variable in the climatic indices (Huglin, 1986). For reasons of convenience, these indices use the temperature of the air measured under shelter in a meteorological station, making the implicit hypothesis of a concordance between this temperature and that of the sites of perception of the thermal stimulus by the plant. However, development may be more dependent on soil temperature than air temperature (Kliewer, 1975). Morlat (1989) thus verified that the variability in the precocity of the vine, positively correlated with the quality of the harvest and of the wine in the Loire Valley, was mainly explained by differences in temperature of the root zones.

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).