WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Aroma diversity of Amarone commercial wines

Aroma diversity of Amarone commercial wines

Abstract

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release. The present work aims at characterizing the aroma composition of Amarone and to elucidate the relationships between chemical composition and sensory characters. Two sets of Amarone wines from different vintages 2015 (17 wines) and 2016 (15 wines) were analyzed. The analyses were carried out by means of Gas Chromatography-Mass Spectrometry (GC-MS) and extracted by Solid Phase Extraction (SPE) and Solid Phase Micro Extraction (SPME). In addition, the sampled wines were subjected to a sensory evaluation in the form of sorting task. From both data sets, 70 volatile compounds were successfully identified and quantified, 30 of which were present in concentrations above their odor thresholds in all the samples. Using the odor activity value (OAV), the compounds that potentially contribute to Amarone perceived aroma are β-damascenone, ethyl and isoamyl acetate, ethyl esters (hexanoate, octanoate, butanoate, 3-methybutanoate), 4-ethyl guaiacol, 3-methylbutanoic acid, dimethyl sulfide (DMS), eugenol, massoia lactone, 1,4-cineol, TDN, cis-whisky lactone. The only differences found between the two vintages’ OAV list, could be observed in the presence of dimethyl trisulfide (DMTS) in the vintage 2015; whereas in the 2016 set γ-nonalactone and trans-whisky lactone were found. Regarding the compounds that impart the most differences across both vintages, OAV max/min, where 4- ethyl phenol, 4-ethyl guaiacol, 1,8-cineole, 1,4-cineole, dimethyl sulfide (DMS). Results from the sorting task sensory analysis of the 17 wines from vintage 2015 showed three clusters formed. Cluster 1 composed of eight wines and described as “red fruit”, “solvent” and “sweet spices”. Cluster 2 formed by four Amarone was associated mainly with the “animal” and “oak/toasted” attributes. And cluster 3 (five wines) described with the attribute “cooked fruit”. While in the sorting task of vintage 2016 (15 wines) two vintages coming from different wineries . Moreover, from the volatiles analyzed, compounds such as dimethyl sulfide (DMS) and cineoles have been singled out as potential aroma markers of diversity in Amarone wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Jessica Anahi Samaniego Solis, Maurizio, Ugliano, Davide, Slaghenaufi, Giovanni, Luzzin

Presenting author

Jessica Anahi Samaniego Solis – University of Verona

University of Verona | University of Verona | University of Verona

Contact the author

Keywords

Amarone – grape withering – Corvina – Corvinone

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Characterization of bunch compactness and identification of associated genes in a diverse collection of cultivars of Vitis vinifera L.

Compactness is a complex trait of V. vinifera L. and is defined ultimately by the portion of free space within the bunch which is not occupied by the berries. A high degree of compactness results in poor ventilation and consequently a higher susceptibility to fungal diseases, diminishing the quality of the fruit. The easiness to conceptualize the trait and its importance arguably contrasts with the difficulty to measure and quantify it. However, recent technical advancements have allowed to study this attribute more accurately over the last decade. Our main objective was to explore the underlying genetics determining bunch compactness by applying updated phenotyping methods in a collection of V. vinifera L. cultivars with a wide genetic diversity.

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Context description and research question: an increasing number of farmers are considering the impact of conservation practices on soil health to guide sustainable management of vineyards. Understanding impacts of soil management on soil organic carbon (SOC) is one lever for adoption of agroecological practice with potential to help maintain or improve soil health while building SOC stocks to mitigate climate change (Amelung et al., 2020).

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

Optimized grape seed protein extraction for wine fining

The extraction of proteins from grape seeds represents a promising strategy to revalorize wine industry by-products. As a natural endogenous fining agent, grape seed protein (GSE) offers an effective solution for wine clarification [1] without requiring label declaration.