WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Eugenol:  a new marker of hybrid vines? The case study of Baco Blanc in Armagnac

Eugenol:  a new marker of hybrid vines? The case study of Baco Blanc in Armagnac

Abstract

Nowadays, winemaking is dealing with great challenges, notably climate change, disease resistance and low pesticide inputs, desire for more sustainable agricultural productions and permanent changing of consumer preference. Trying to propose practice improvements, scientists are exploring vine hybridization a paradoxically old but still actual way to take up such challenges (Pedneault & Provost, 2016). Phylloxera crisis in Europe (XIXth century) was a crucial step for improving hybridization in grapevine. Unfortunately some of the wines produced then presented redibitory sensorial default and were finally excluded for getting the PDO (Protected Designation of Origin) wine label in France.

 However, one grape variety from Armagnac vineyard resisted despite the ban: the Baco blanc, a complex hybrid of Vitis labrusca x Vitis riparia x Vitis vinifera. Baco was created to be a disease tolerant vine and productive vine of white wine intended for distillation (Baco, 1925).

Armagnac white brandies elaborated with only Baco Blanc present an atypical chemical profile. Eugenol, a phenylpropenic compound, usually known to be released by contact with oak, is significantly more concentrated in white brandies made with Baco than same products made with V.vinifera cultivars. Moreover, eugenol has been identified in other hybrid vines (Sun et al., 2011). Pure form of eugenol has a clove aroma and a noticeable and well-known antiseptic action, a gustative impact including an anesthesic power. These observations raises plenty of questions but the main ones are: “Is there a link between tolerance of the Baco to diseases and the presence of eugenol?”; “What is the dynamic of eugenol levels during spirit making?”; “Is there a link between the eugenol presence and the typicity of Baco?”.

Thus, we quantified eugenol in plants, grapes, musts, wines and distillates by HS-SPME-GC/MS. In grapes, a greater eugenol concentration and accumulation during maturation occurred in Baco Blanc than in other V.vinifera cultivars we tested (Ugni Blanc and Folle Blanche). In Baco Blanc wines, the use of enzymes increases the eugenol content during first steps of winemaking and highlights the existence of both eugenol forms, bounded and free fractions. Furthermore, eugenol amounts seemed to increase along with the storage duration on lees (before distillation). Finally, alambic characteristics may influence the alcohol content which may also impact eugenol concentration.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Xavier Hastoy, Céline Franc, Laurent Riquier, Stéphanie Marchand-Marion, Marie-Claude Ségur, Marc Fermaud, Gilles De Revel

Presenting author

Xavier Hastoy – Université Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, 33882 Villenave d’Ornon cedex, France

Université Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, 33882 Villenave d’Ornon cedex, France | Université Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, 33882 Villenave d’Ornon cedex, France | Université Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, 33882 Villenave d’Ornon cedex, France | Bureau National Interprofessionnel de l’Armagnac (BNIA), 32800 Eauze, France | INRAE, UMR SAVE, Bordeaux Science Agro, ISVV, F-33882, Villenave d’Ornon, France | Université Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, 33882 Villenave d’Ornon cedex, France

Contact the author

Keywords

Eugenol-Baco blanc-Brandies-Armagnac-Hybrid vines

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Teran grape quality influenced by different irrigation treatments

Teran is an important native variety grown in Istria known for its high level of polyphenols and intensive fruity character of wines. Teran’s yield and wine typicity have recently decreased due to climate changes (increased temperature and severe drought). Four drip irrigation treatments (25%, 50%, 75%, 100% of total evapotranspiration) and control were investigated for the influence on Teran yield and quality, where focus was given to the content and composition of main polyphenolic and volatile compounds in grapes. Irrigation positively influenced yield since the berry weight also increased with increased irrigation. This resulted in the highest yield for 100% ETc. The highest concentration of polyphenols had control, while the irrigation treatments did not differ significantly. However, there was a tendency to decrease concentration with increased irrigation probably due to the increased berry size, which led to a dilution effect. Regarding the volatile compounds, the most abundant group was alcohols, followed by acids.

Characterizing chemical influences of smoke on wine via novel application of 13c-labelled smoke

Smoke impact is an ongoing and growing issue for vintners across the globe, with the west coast of the U.S. and Australia being two of the largest wine industries impacted. Wine has shown to be especially sensitive to smoke exposure, often acquiring off-flavor sensory characteristics, such as “burnt rubber”, “ashy”, or other medicinal off-flavors.1 While several studies have examined the chemical composition of smoke influences on wine, some studies disagree on what compounds are having the largest impact on smell and flavor.2 This study is designed as a bottom-up approach to inventory the chemical compounds derived from smoke from a grassland-like fire that are potentially influencing wine chemical composition.

Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Partial rootzone drying (PRD) is an irrigation management technique designed to reduce water use in grapevines without a decline in yield, thereby increasing water use efficiency (WUE). The principle of PRD is to keep part of the root system at a constant drying rate to produce soil derived signals to above-ground plant organs to induce a

Polysaccharides and glycerol production by non-Saccharomyces wine yeasts in mixed fermentation

A great variability in the amount of polysaccharides recovered at the end of fermentations carried out by pure cultures of 89 non-Saccharomyces yeasts was observed. The utilization of the best polysaccharides producers in mixed cultures with S. cerevisiae resulted in considerable increases in the final concentration of polysaccharides and showed a strain dependent effect on glycerol production as compared to pure culture of S. cerevisiae.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.