WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Bioprotection and oenological tannins association to protect Rosé wine color

Bioprotection and oenological tannins association to protect Rosé wine color

Abstract

The bioprotection of musts or grapes is a strategy for limiting sulfiting during winemaking and more specifically at pre-fermentative step. The most preconized yeasts in bioprotection mainly belong to Metschnikowia pulcherrima and Torulaspora delbrueckii species. While previous studies have demonstrated that bioprotectant non-Saccharomyces strains were able to protect musts and wines against microbial spoilage as well as sulfites, they cannot protect must against oxidation which appears to be the main limit of this practice.

A combination of antimicrobial activity through bioprotection (inoculation of a Metschnikowia pulcherrima strain on grapes) and the antioxidant properties of low amounts of sulfites or enological tannins have been tested in order to replace or diminish SO2 addition in rosé winemaking (grape variety Pinot Noir) at pre-fermentative steps. This experiment was carried out under cellar condition. Two enological tannins were tested: quebracho tannins belonging to the condensed tannins family and gall nuts tannins belonging to the hydrolysable gallotannins family. Results showed that combination of bioprotection with enological tannins protected rosé wine color similarly as the combination with SO2, which was not the case with bioprotection alone. The color differences observed cannot be explained neither by anthocyanins concentration, nor by phenolic composition of wines. Quebracho tannins seemed more efficient than gall nuts tannins to protect the color of bioprotected rosé wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Maelys Puyo, Scott Simonin, Géraldine Klein, Jordi Ballester, Natalia Quijada-Morin, Hervé Alexandre, Raphaëlle Tourdot-Marechal

Presenting author

Maelys Puyo – UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche- Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, F-21000 Dijon, France

UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche- Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, F-21000 Dijon, France | Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRAUniversité de Bourgogne Franche Comté, 9 E Boulevard Jeanne d’Arc, F-21000 Dijon, France

Contact the author

Keywords

Bioprotection – Color – Rosé wine – Enological tannins

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Acidity is often touted as a predictor of wine ageability, though surprisingly few studies have systematically investigated the chemical basis for this claim.

La zonazione della valle d’Illasi (Verona)

In the bottom of Val d’Illasi (Verona province), one of the major valleys which passes through the Lessini mountains, viticulture is widely extended. In the territory belonging to Illasi and Tregnago villages, which includes ca. 1100 ha of vineyards, devoted to produce Soave and Valpolicella DOC wines, an experimental survey was conducted on a network of twenty five reference vineyards.

Development and validation of a free solvent UHPLC/MS-MS method to analyse melatonin and its precursors in Spanish commercial wines  

Melatonin is a bioactive compound present in foods and beverages such as wines. During alcoholic fermentation, yeast transforms tryptophan into certain indole compounds, including melatonin. This paper aims to develop and validate a free solvent analytical method by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC/MS-MS) to determine melatonin and its precursors (L-tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 5-hydroxytryptophan, and 3- indoleacetic) that appropriately prevent the matrix effect.

Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

The wine yeast Saccharomyces cerevisiae can highly affect wine aromatic profile by producing and/or mediating the release of a whole range of metabolites (such as thiols, esters, and terpenes), which in turn contribute to enhanced aroma and flavor. These metabolites depend on yeast metabolism activated during fermentation which can constitute the ‘’metabolic footprint’’ of the yeast strain that carried out the process.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.