WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Bioprotection and oenological tannins association to protect Rosé wine color

Bioprotection and oenological tannins association to protect Rosé wine color

Abstract

The bioprotection of musts or grapes is a strategy for limiting sulfiting during winemaking and more specifically at pre-fermentative step. The most preconized yeasts in bioprotection mainly belong to Metschnikowia pulcherrima and Torulaspora delbrueckii species. While previous studies have demonstrated that bioprotectant non-Saccharomyces strains were able to protect musts and wines against microbial spoilage as well as sulfites, they cannot protect must against oxidation which appears to be the main limit of this practice.

A combination of antimicrobial activity through bioprotection (inoculation of a Metschnikowia pulcherrima strain on grapes) and the antioxidant properties of low amounts of sulfites or enological tannins have been tested in order to replace or diminish SO2 addition in rosé winemaking (grape variety Pinot Noir) at pre-fermentative steps. This experiment was carried out under cellar condition. Two enological tannins were tested: quebracho tannins belonging to the condensed tannins family and gall nuts tannins belonging to the hydrolysable gallotannins family. Results showed that combination of bioprotection with enological tannins protected rosé wine color similarly as the combination with SO2, which was not the case with bioprotection alone. The color differences observed cannot be explained neither by anthocyanins concentration, nor by phenolic composition of wines. Quebracho tannins seemed more efficient than gall nuts tannins to protect the color of bioprotected rosé wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Maelys Puyo, Scott Simonin, Géraldine Klein, Jordi Ballester, Natalia Quijada-Morin, Hervé Alexandre, Raphaëlle Tourdot-Marechal

Presenting author

Maelys Puyo – UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche- Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, F-21000 Dijon, France

UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche- Comté/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, rue Claude Ladrey, BP 27877, F-21000 Dijon, France | Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, UMR 1324 INRAUniversité de Bourgogne Franche Comté, 9 E Boulevard Jeanne d’Arc, F-21000 Dijon, France

Contact the author

Keywords

Bioprotection – Color – Rosé wine – Enological tannins

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

“Terroir” and climate change in Franconia / Germany

Franconia which is a “cool climate” winegrowing region is well known for its fruity white wines. The most common grape cultivars are Silvaner and Mueller-Thurgau.

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis.

Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Winter pruning is today the longest operation for hand workers in the vineyard. Over the last years, mechanical pruning practices have become popular in southern France vineyards to respond to competitiveness issue especially for the basic and mid-range wine production. Wine farmers have developed different vineyard management techniques associated with mechanical winter pruning. They sought to be precise or not to control the buds number per vine.

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.