WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Vitamins in musts : an unexplored field

Vitamins in musts : an unexplored field

Abstract

Vitamins are major compounds, involved in several prime yeast metabolic pathways. Yet, their significance in oenology has remained mostly unexplored for several decades and our current knowledge on the matter still remaining obscure to this day. While the vitaminic contents of grape musts have been approached in these ancient investigations, their vitameric composition have never even been investigated so far. To shed light onto this unexplored field, a novel HPLC procedure has been developed and validated for the simultaneous and direct analysis of 19 different vitamers from 8 different vitaminic groups (B1, B2, B3, B5, B6, B8, B9, C) in a one-hour chromatography run, that is exempted from any treatment of the sample prior to injection. This technique has allowed for the characterization of 85 white grape musts from different geographical origins, cultivars, as well as vintages. Noticeable patterns appeared in regard to the grapevines areas of cultivation, suggesting possible leads for further characterization. Overall, vitamins stand as highly diverse and versatile in concentrations, strongly varying between musts. This analytical tool could allow to further define the yeast nutritional requirements for vitamins, and, as such, better conduct the alcoholic fermentations in oenology in regards to possible deficiencies in grape musts, as well as allowing to investigate the influence held by vitamins in oenology in regards to wine aromatic profiles.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Marie Sarah Evers, Hervé Alexandre, Christophe Morge, Celine Sparrow, Antoine Gobert, Chloé Roullier-Gall

Presenting author

Marie Sarah Evers – (1) Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France ; (2) Sofralab SAS, Magenta, France

Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France | Sofralab SAS, Magenta, France | Sofralab SAS, Magenta, France | Sofralab SAS, Magenta, France | Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France,

Contact the author

Keywords

vitamins – grape must – HPLC – oenology – winemaking

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.

Effects of water deficit on secondary metabolites in grapes and wines

In this video recording of the IVES science meeting 2021, Simone D. Castellarin (University of British Columbia, Wine Research Center, Wine Research Centre, Vancouver, Canada) speaks about the effects of water deficit on secondary metabolites in grapes and wines. This presentation is based on an original article accessible for free on OENO One.

Geospatial trends of bioclimatic indexes in the topographically complex region of Barolo DOCG

Barolo DOCG is an economically important wine producing region in Northwest Italy. It is a small region of approximately 70 km2 gross area. The topography is very complex with steep sloped hills ranging in elevation from below 200 m to 550 m. Barolo DOCG wine is made exclusively from the Nebbiolo grape. Bioclimatic indexes are often used in viticulture to gain a better understanding of broader climate trends which can be compared temporally and geographically. These indexes are also used for identifying potential phenological timing, growing region suitability, and potential risks associated with expected climatic changes. Understanding how topography influences bioclimatic indexes can help with understanding of mesoscale climate behaviour leading to improved decision making and risk management strategies. The average monthly maximum and minimum temperatures, the Cool Night Index, the Huglin Index, and the monthly diurnal range (from July to October) were calculated using data from 45 weather stations within a 40 km radius of the Barolo DOCG growing area between the years 1996 and 2019. Linear and multiple regression models were developed using independent variables (elevation, aspect, slope) extracted from a digital elevation model to identify significant relationships. Bioclimatic indexes were then kriged with external drift using independent variables that showed significant relationships with the bioclimatic index using a 100 m resolution grid. The maximum monthly temperatures and the Huglin Index showed consistent significant negative relationships with elevation in all years. The minimum monthly temperatures showed no relationship with elevation but in some months a small but significant relationship was observed with aspect. Due to the lack of a relationship between minimum monthly temperatures and elevation compared to the significant relationship between maximum monthly temperatures and elevation, monthly diurnal range had a negative relationship with elevation.

Viticultural Climatic Zoning and Digital Mapping of Rio Grande do Sul – Brazil, using Indices of the Géoviticulture MCC System

The State Rio Grande do Sul is the main producer of Brazilian fine wines, with four viticultural regions. The objective is the characterization of the viticultural climatic potential of the State (total surface of 281.749 km2). The methodology use the Géoviticulture Multicriteria Climatic Classification System (Géoviticulture MCC System), based on three climatic indices – Dryness Index (DI), Heliotermal Index (HI) and Cool Night Index (CI).

Terroir effects from the reflectance spectra of the canopy of vineyards in four viticultural regions

Knowledge of the reflectance spectrum of grape leaves is important to the identification of grape varieties in images of viticultural regions where several cultivars co-exist.