WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Vitamins in musts : an unexplored field

Vitamins in musts : an unexplored field

Abstract

Vitamins are major compounds, involved in several prime yeast metabolic pathways. Yet, their significance in oenology has remained mostly unexplored for several decades and our current knowledge on the matter still remaining obscure to this day. While the vitaminic contents of grape musts have been approached in these ancient investigations, their vitameric composition have never even been investigated so far. To shed light onto this unexplored field, a novel HPLC procedure has been developed and validated for the simultaneous and direct analysis of 19 different vitamers from 8 different vitaminic groups (B1, B2, B3, B5, B6, B8, B9, C) in a one-hour chromatography run, that is exempted from any treatment of the sample prior to injection. This technique has allowed for the characterization of 85 white grape musts from different geographical origins, cultivars, as well as vintages. Noticeable patterns appeared in regard to the grapevines areas of cultivation, suggesting possible leads for further characterization. Overall, vitamins stand as highly diverse and versatile in concentrations, strongly varying between musts. This analytical tool could allow to further define the yeast nutritional requirements for vitamins, and, as such, better conduct the alcoholic fermentations in oenology in regards to possible deficiencies in grape musts, as well as allowing to investigate the influence held by vitamins in oenology in regards to wine aromatic profiles.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Marie Sarah Evers, Hervé Alexandre, Christophe Morge, Celine Sparrow, Antoine Gobert, Chloé Roullier-Gall

Presenting author

Marie Sarah Evers – (1) Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France ; (2) Sofralab SAS, Magenta, France

Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France | Sofralab SAS, Magenta, France | Sofralab SAS, Magenta, France | Sofralab SAS, Magenta, France | Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France,

Contact the author

Keywords

vitamins – grape must – HPLC – oenology – winemaking

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Aims: Due to climate change and the desire to decrease enological inputs (organic farming), the vineyard has to be modified and the selection of new resistant grape varieties as an alternative is researched intensively today. From January 2018, four new grape varieties that are resistant against mildew and odium have been added to the official

Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Calcium-induced instabilities present a major challenge in bottled wines, with calcium tartrate (CaT) precipitation becoming increasingly common due to rising calcium levels in grape must, largely driven by climate change. Although CaT is an insoluble salt, its instability— although less frequent than potassium hydrogen tartrate (KHT) precipitation—is more difficult to predict and control, as it develops gradually over time.

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR.