WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Vitamins in musts : an unexplored field

Vitamins in musts : an unexplored field

Abstract

Vitamins are major compounds, involved in several prime yeast metabolic pathways. Yet, their significance in oenology has remained mostly unexplored for several decades and our current knowledge on the matter still remaining obscure to this day. While the vitaminic contents of grape musts have been approached in these ancient investigations, their vitameric composition have never even been investigated so far. To shed light onto this unexplored field, a novel HPLC procedure has been developed and validated for the simultaneous and direct analysis of 19 different vitamers from 8 different vitaminic groups (B1, B2, B3, B5, B6, B8, B9, C) in a one-hour chromatography run, that is exempted from any treatment of the sample prior to injection. This technique has allowed for the characterization of 85 white grape musts from different geographical origins, cultivars, as well as vintages. Noticeable patterns appeared in regard to the grapevines areas of cultivation, suggesting possible leads for further characterization. Overall, vitamins stand as highly diverse and versatile in concentrations, strongly varying between musts. This analytical tool could allow to further define the yeast nutritional requirements for vitamins, and, as such, better conduct the alcoholic fermentations in oenology in regards to possible deficiencies in grape musts, as well as allowing to investigate the influence held by vitamins in oenology in regards to wine aromatic profiles.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Marie Sarah Evers, Hervé Alexandre, Christophe Morge, Celine Sparrow, Antoine Gobert, Chloé Roullier-Gall

Presenting author

Marie Sarah Evers – (1) Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France ; (2) Sofralab SAS, Magenta, France

Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France | Sofralab SAS, Magenta, France | Sofralab SAS, Magenta, France | Sofralab SAS, Magenta, France | Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France,

Contact the author

Keywords

vitamins – grape must – HPLC – oenology – winemaking

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Influence of spraying of copper fungicides on physiological parameters of Vitis vinifera L. Cv. ‘Merlot’

Vine downy mildew is one of the most frequent diseases in intensive vineyards. Bordeaux mixture (B.m.), in order to control the disease has been applied onto vineyards since the end of the 19th century. The intensive use of Cu-fungicides could influence the physiology of grapevine. It is also possible that high amounts of foliar Cu sprays trigger stress responses in vine leaves.

Identification of compounds produced by reactions of flavonoids and acetaldehyde in wine

During aging, wine consumes small amounts of oxygen. This oxygen intake triggers a series of reactions that lead to flavonoid elongation, which is known to reduce bitterness and astringency while enhancing color stability.

Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

The accession Criolla Chica Nº2 (CCN2) is catalogued as a floral mutation of cultivar Criolla Chica (synonym for cv. Listán Prieto). Contrary to what is observed in hermaphrodite-cultivated varieties like Criolla Chica, CCN2 exhibits a prevalence of masculinized flowers. Aiming to study the incidence and phenotypical implications of this mutation, CCN2 plants were deeply studied using Criolla Chica ‘Ballista’ (CCBA) as control plants. For each CCN2 plant, two inflorescences per shoot were sampled and segmented into proximal, mid and distal positions, relative to the pedicel. Flowers were observed through magnifying lens and classified according to OIV151 descriptor.

Variety specific thresholds for plant-based indicators of vine nitrogen status

Aim: Several plant-based indicators of vine N status are reported in the literature. Among these, yeast assimilable nitrogen in grape must (YAN) and total N concentration of petiole and leaf blades are considered to be reliable indicators and so is the chlorophyll index, measured with a device called N-tester. The N-tester index is used to measure the intensity of the green colour of the leaf blade, and therefore to estimate its chlorophyll content.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).