WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Vitamins in musts : an unexplored field

Vitamins in musts : an unexplored field

Abstract

Vitamins are major compounds, involved in several prime yeast metabolic pathways. Yet, their significance in oenology has remained mostly unexplored for several decades and our current knowledge on the matter still remaining obscure to this day. While the vitaminic contents of grape musts have been approached in these ancient investigations, their vitameric composition have never even been investigated so far. To shed light onto this unexplored field, a novel HPLC procedure has been developed and validated for the simultaneous and direct analysis of 19 different vitamers from 8 different vitaminic groups (B1, B2, B3, B5, B6, B8, B9, C) in a one-hour chromatography run, that is exempted from any treatment of the sample prior to injection. This technique has allowed for the characterization of 85 white grape musts from different geographical origins, cultivars, as well as vintages. Noticeable patterns appeared in regard to the grapevines areas of cultivation, suggesting possible leads for further characterization. Overall, vitamins stand as highly diverse and versatile in concentrations, strongly varying between musts. This analytical tool could allow to further define the yeast nutritional requirements for vitamins, and, as such, better conduct the alcoholic fermentations in oenology in regards to possible deficiencies in grape musts, as well as allowing to investigate the influence held by vitamins in oenology in regards to wine aromatic profiles.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Marie Sarah Evers, Hervé Alexandre, Christophe Morge, Celine Sparrow, Antoine Gobert, Chloé Roullier-Gall

Presenting author

Marie Sarah Evers – (1) Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France ; (2) Sofralab SAS, Magenta, France

Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France | Sofralab SAS, Magenta, France | Sofralab SAS, Magenta, France | Sofralab SAS, Magenta, France | Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France,

Contact the author

Keywords

vitamins – grape must – HPLC – oenology – winemaking

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Lean management to improve sustainability in wine sector: an exploratory study in the Prosecco DOC appellation

The contemporary wine sector confronts a formidable array of challenges, including burgeoning production costs and the constricted availability of natural resources. Heightened consumer awareness regarding sustainability issues further compounds these pressures, compelling companies to adopt more judicious resource utilization strategies. In response to these imperatives, there is a growing recognition of the need to overhaul production methodologies within the wine industry with a view to minimizing inputs and eliminating waste.

Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Cabernet Sauvignon grapes from recently planted vines in Santa Catarina State (Brazil), were sampled during ripening from the 2005 and 2006 vintages.

The wine: a never-ending source of H2S and methanethiol

Volatile sulfur compounds (VSCs), mainly hydrogen sulfide and methanethiol (H2S and MeSH), are the responsible for reductive off-odor in wine.

The impact of nutrition label formats on wine consumer preferences

Recent regulations concerning alcoholic beverages have prompted producers to revise their product labels to incorporate nutritional information. In this context, qr codes containing such information, known as e-labels, are now being employed on wine labels for the first time.

Novel ATR-FTIR and UV-Vis spectral markers for assessing the Prooxidant/Antioxidant Balance (PAB) in white wines

The browning index (BI), based on the absorbance at 420 nm, is a common oxidation marker in white wines, typically measured after thermal stress (50–60 °C for 5 up to 12 days) in air-saturated wines.