WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Bio-acidification of wines by Lachancea thermotolerans

Bio-acidification of wines by Lachancea thermotolerans

Abstract

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation. Our work first elucidated the genetic (~200) and phenotypic (~100) diversity of LT strains, and then tested the performance of their subset in co-cultures with Saccharomyces cerevisiae (SC). In pure and mixed cultures alike, the modulation of acidity and other compositional parameters of wines depended on the LT strain, with either comparable or significant acidification relative to the SC control. An LT strain with exceptional bio-acidifying properties was selected, capable of lowering wine pH by ~0.5 units, and further characterised across a range of oenological conditions.

Our follow-up study aimed to i) compare the profiles of bio-acidified LT wines and acid-adjusted SC wines, and ii) evaluate the use of LT wines as blending components. For this purpose, high sugar/pH Merlot grapes were fermented with a sequential culture of LT and SC, and an SC monoculture. The aliquots of the SC control (pH 4) were acidified with either tartaric or lactic acid to the pH of the LT wine (pH 3.6), and the initial wines also blended in three proportions (1:3, 1:1, 3:1). Chemical analysis revealed major differences in a range of chemical parameters of wines (e.g. ethanol content, acidity parameters, volatile compounds, amino acids).  The compositional modulations were reflected in the sensory profiles of wines, as confirmed via ‘Rate-All-That-Apply’ evaluation by wine experts (n=30). Sensory profiles of the bio-acidified LT wine and the lactic acid-adjusted SC wine were similar, and contrasting to the tartaric acid-adjusted SC wine. Despite an identical initial matrix, lactic acid-adjusted SC wine had higher ‘red fruit’ flavour, and lower ‘hotness’, ‘bitterness’ and ‘body’ relative to tartaric acid-adjusted wine. This was driven by differences in ‘acidity’ perception, affected by titratable acidity (rather than pH) of wines. An inhibition of Brettanomyces bruxellensis growth was also observed in the bio-acidified LT wine and the lactic-acid adjusted SC wine. The profiles of blends were modulated depending on the proportion of the bio-acidified wine, thus highlighting the potential of this approach to boost ‘freshness’ and differentiate wine styles.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Ana, Hranilovic, Marina Bely, Isabelle Masneuf-Pomarede, Joana Coulon, Warren Albertin, Vladimir Jiranek

Presenting author

Ana, Hranilovic – Department of Wine Science, The University of Adelaide, Australia

Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | BioLaffort, Floirac, France | Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | Department of Wine Science, The University of Adelaide, Australia,

Contact the author

Keywords

non-Saccharomyces yeasts – Lachancea thermotolerans – wine acidification – volatile composition – RATA sensory profiling

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

The selection of Vitis vinifera L. cultivars based on berry texture, iPBS genetic markers, and noble rot susceptibility analysis

The selection of a suitable grape variety (Vitis vinifera L.) for specific viticulture and oenology objectives is a considerable challenge in the context of climate change.

USDA national grapevine germplasm resources: new curators, new directions

The National Plant Germplasm System (NPGS) in the United States Department of Agriculture safeguards numerous species. Grapevines are split in two locations: Davis, CA and Geneva, NY. The two germplasms maintain 43 Vitis species with over 4500 genetically unique accessions.

Irrigation and terroir: two opposite concepts? Point of view of international experts and french consumers

At long term, qualitative irrigation seems to be the most systematic, if not the best, cultural practice for dealing with climate change and yield increases without decrease grape quality.

Effect of Quercus Alba oak barrels from different forests on the polyphenolic composition of Tempranillo red wines

The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily in the states of Virginia, Missouri, Kentucky, Oregon, Ohio, Minnesota, Wisconsin and California. The aim of this study was to analyze how the choice of barrels made with Quercus Alba oak from different geographic areas of the United States (Missouri, Kentucky, Ohio and Pennsylvania) influences the polyphenolic composition of Tempranillo red wines.