WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Bio-acidification of wines by Lachancea thermotolerans

Bio-acidification of wines by Lachancea thermotolerans

Abstract

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation. Our work first elucidated the genetic (~200) and phenotypic (~100) diversity of LT strains, and then tested the performance of their subset in co-cultures with Saccharomyces cerevisiae (SC). In pure and mixed cultures alike, the modulation of acidity and other compositional parameters of wines depended on the LT strain, with either comparable or significant acidification relative to the SC control. An LT strain with exceptional bio-acidifying properties was selected, capable of lowering wine pH by ~0.5 units, and further characterised across a range of oenological conditions.

Our follow-up study aimed to i) compare the profiles of bio-acidified LT wines and acid-adjusted SC wines, and ii) evaluate the use of LT wines as blending components. For this purpose, high sugar/pH Merlot grapes were fermented with a sequential culture of LT and SC, and an SC monoculture. The aliquots of the SC control (pH 4) were acidified with either tartaric or lactic acid to the pH of the LT wine (pH 3.6), and the initial wines also blended in three proportions (1:3, 1:1, 3:1). Chemical analysis revealed major differences in a range of chemical parameters of wines (e.g. ethanol content, acidity parameters, volatile compounds, amino acids).  The compositional modulations were reflected in the sensory profiles of wines, as confirmed via ‘Rate-All-That-Apply’ evaluation by wine experts (n=30). Sensory profiles of the bio-acidified LT wine and the lactic acid-adjusted SC wine were similar, and contrasting to the tartaric acid-adjusted SC wine. Despite an identical initial matrix, lactic acid-adjusted SC wine had higher ‘red fruit’ flavour, and lower ‘hotness’, ‘bitterness’ and ‘body’ relative to tartaric acid-adjusted wine. This was driven by differences in ‘acidity’ perception, affected by titratable acidity (rather than pH) of wines. An inhibition of Brettanomyces bruxellensis growth was also observed in the bio-acidified LT wine and the lactic-acid adjusted SC wine. The profiles of blends were modulated depending on the proportion of the bio-acidified wine, thus highlighting the potential of this approach to boost ‘freshness’ and differentiate wine styles.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Ana, Hranilovic, Marina Bely, Isabelle Masneuf-Pomarede, Joana Coulon, Warren Albertin, Vladimir Jiranek

Presenting author

Ana, Hranilovic – Department of Wine Science, The University of Adelaide, Australia

Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | BioLaffort, Floirac, France | Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | Department of Wine Science, The University of Adelaide, Australia,

Contact the author

Keywords

non-Saccharomyces yeasts – Lachancea thermotolerans – wine acidification – volatile composition – RATA sensory profiling

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Effects of fast dehydration at low temperature and relative humidity on the phenolic composition of Nebbiolo grapes

Grape postharvest dehydration is a widely used technique for the special wines production, where genetic features, ripeness degree and environmental factors strongly influence the metabolic processes [1].

Functionality of different inter-stimulus rinse protocols for the sensory analysis of wildfire affected wines

From the effect of global climate change, wildfire occurrence during grape ripening has increased. These wildfires produce smoke that can carry organic compounds to a vineyard. These smoke compounds are adsorbed in the grape berry and result in wines with elevated levels of smoke-related phenols. These wines are described as having a smokey, burnt, and dirty aroma (Kristic et al, 2015). Not only are volatile phenols carried by smoke, but additionally glycoconjugate forms of these phenols are present as will. These have been found to have a large impact on the flavor of wines, being the cause of a lasting ashy aftertaste post consumption (Parker et al, 2012). When evaluating the sensory profile of these wines when tasted one after the other, there is an observed problem due to the lasting nature of these undesirable attributes and high level of carry-over from sample to sample. The aim of this work is to evaluate the extent this carryover occurs, along with the best sensory practices to mitigate its influence via different inter-stimulus rinse protocols.

Integrated multiblock data analysis for improved understanding of grape maturity and vineyard site contributions to wine composition and sensory domains

Much research has sought to define the complex contribution of terroir (varieties x site x cultural practices) on wine composition. This investigation applied recent advances in chemometrics to determine relative contributions of vine growth, berry maturity and site mesoclimate to wine composition and sensory profiles of Shiraz and Cabernet Sauvignon for two vintages.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Malolactic fermentation in wine production

What influence do these bacteria have on wines? What new bacteria are being studied to carry out this fermentation? Find below articles about malolactic fermentation published in our 3 media (OENO One, IVES Technical Reviews and IVES Conference Series). OENO One...