WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Bio-acidification of wines by Lachancea thermotolerans

Bio-acidification of wines by Lachancea thermotolerans

Abstract

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation. Our work first elucidated the genetic (~200) and phenotypic (~100) diversity of LT strains, and then tested the performance of their subset in co-cultures with Saccharomyces cerevisiae (SC). In pure and mixed cultures alike, the modulation of acidity and other compositional parameters of wines depended on the LT strain, with either comparable or significant acidification relative to the SC control. An LT strain with exceptional bio-acidifying properties was selected, capable of lowering wine pH by ~0.5 units, and further characterised across a range of oenological conditions.

Our follow-up study aimed to i) compare the profiles of bio-acidified LT wines and acid-adjusted SC wines, and ii) evaluate the use of LT wines as blending components. For this purpose, high sugar/pH Merlot grapes were fermented with a sequential culture of LT and SC, and an SC monoculture. The aliquots of the SC control (pH 4) were acidified with either tartaric or lactic acid to the pH of the LT wine (pH 3.6), and the initial wines also blended in three proportions (1:3, 1:1, 3:1). Chemical analysis revealed major differences in a range of chemical parameters of wines (e.g. ethanol content, acidity parameters, volatile compounds, amino acids).  The compositional modulations were reflected in the sensory profiles of wines, as confirmed via ‘Rate-All-That-Apply’ evaluation by wine experts (n=30). Sensory profiles of the bio-acidified LT wine and the lactic acid-adjusted SC wine were similar, and contrasting to the tartaric acid-adjusted SC wine. Despite an identical initial matrix, lactic acid-adjusted SC wine had higher ‘red fruit’ flavour, and lower ‘hotness’, ‘bitterness’ and ‘body’ relative to tartaric acid-adjusted wine. This was driven by differences in ‘acidity’ perception, affected by titratable acidity (rather than pH) of wines. An inhibition of Brettanomyces bruxellensis growth was also observed in the bio-acidified LT wine and the lactic-acid adjusted SC wine. The profiles of blends were modulated depending on the proportion of the bio-acidified wine, thus highlighting the potential of this approach to boost ‘freshness’ and differentiate wine styles.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Ana, Hranilovic, Marina Bely, Isabelle Masneuf-Pomarede, Joana Coulon, Warren Albertin, Vladimir Jiranek

Presenting author

Ana, Hranilovic – Department of Wine Science, The University of Adelaide, Australia

Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | BioLaffort, Floirac, France | Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | Department of Wine Science, The University of Adelaide, Australia,

Contact the author

Keywords

non-Saccharomyces yeasts – Lachancea thermotolerans – wine acidification – volatile composition – RATA sensory profiling

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

During wine alcoholic fermentation, yeasts produce volatile aroma compounds from sugar and nitrogen metabolism. Some of the metabolic pathways leading to these compounds have been known for more than a century.

Membrane contactor: a sustainable technology to remove dissolved oxygen from wine and preserve wine aroma

Oxygen management in wine is one of the most significant challenging issues for winemakers.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of While the trend in winemaking is toward reducing the inputs