WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Bio-acidification of wines by Lachancea thermotolerans

Bio-acidification of wines by Lachancea thermotolerans

Abstract

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation. Our work first elucidated the genetic (~200) and phenotypic (~100) diversity of LT strains, and then tested the performance of their subset in co-cultures with Saccharomyces cerevisiae (SC). In pure and mixed cultures alike, the modulation of acidity and other compositional parameters of wines depended on the LT strain, with either comparable or significant acidification relative to the SC control. An LT strain with exceptional bio-acidifying properties was selected, capable of lowering wine pH by ~0.5 units, and further characterised across a range of oenological conditions.

Our follow-up study aimed to i) compare the profiles of bio-acidified LT wines and acid-adjusted SC wines, and ii) evaluate the use of LT wines as blending components. For this purpose, high sugar/pH Merlot grapes were fermented with a sequential culture of LT and SC, and an SC monoculture. The aliquots of the SC control (pH 4) were acidified with either tartaric or lactic acid to the pH of the LT wine (pH 3.6), and the initial wines also blended in three proportions (1:3, 1:1, 3:1). Chemical analysis revealed major differences in a range of chemical parameters of wines (e.g. ethanol content, acidity parameters, volatile compounds, amino acids).  The compositional modulations were reflected in the sensory profiles of wines, as confirmed via ‘Rate-All-That-Apply’ evaluation by wine experts (n=30). Sensory profiles of the bio-acidified LT wine and the lactic acid-adjusted SC wine were similar, and contrasting to the tartaric acid-adjusted SC wine. Despite an identical initial matrix, lactic acid-adjusted SC wine had higher ‘red fruit’ flavour, and lower ‘hotness’, ‘bitterness’ and ‘body’ relative to tartaric acid-adjusted wine. This was driven by differences in ‘acidity’ perception, affected by titratable acidity (rather than pH) of wines. An inhibition of Brettanomyces bruxellensis growth was also observed in the bio-acidified LT wine and the lactic-acid adjusted SC wine. The profiles of blends were modulated depending on the proportion of the bio-acidified wine, thus highlighting the potential of this approach to boost ‘freshness’ and differentiate wine styles.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Ana, Hranilovic, Marina Bely, Isabelle Masneuf-Pomarede, Joana Coulon, Warren Albertin, Vladimir Jiranek

Presenting author

Ana, Hranilovic – Department of Wine Science, The University of Adelaide, Australia

Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | BioLaffort, Floirac, France | Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | Department of Wine Science, The University of Adelaide, Australia,

Contact the author

Keywords

non-Saccharomyces yeasts – Lachancea thermotolerans – wine acidification – volatile composition – RATA sensory profiling

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Développer des outils simples pour accompagner les viticulteurs dans leurs changements de pratiques et répondre aux enjeux du siècle à venir

French viticulture is currently facing major challenges as it enters the new century: climate change, the need to reduce inputs, societal issues, changing consumer habits, labor shortages …. Vinopôle bordeaux-aquitaine, to which the teams from the chambre d’agriculture de la gironde belong, supports winegrowers of the gironde and bergerac-duras regions in the gradual evolution of their practices.

Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Regarding the food quality, authenticity is one of the most important issues in the context of ensuring the safety and security of consumers, but is also more important when it comes to wine (one of the most counterfeited foods in the world).

Digitization for automation–A frost management case study

The need to mitigate the yield impact of Spring frosts in vineyards remains a significant challenge around the world.

Hidden costs of wine: quantifying environmental externalities of organic and integrated management

Agriculture is one of the largest contributors to environmental pollution and causing significant impacts on human health, ecosystems, and resource availability.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).