WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Organic volatile compounds as suitable markers of grapevine response to defense elicitors in the vineyard

Organic volatile compounds as suitable markers of grapevine response to defense elicitors in the vineyard

Abstract

In greenhouse, emission of volatile organic compounds (VOC) by grapevine leaves has already been reported in response to the defence elicitor sulfated laminarin (PS3) [1]. In order to check that this response was not specific to PS3, experiments were conducted on Vitis cv Marselan plantlets with several other elicitors of different chemical structures: i.e. Bastid® (COS-OGA), chitosan, Redeli® (phosphonate), Romeo® (yeast extract) and Bion® (acibenzolar-S-methyl). Stir bar sorptive extraction (SBSE) was used as VOC sensor and volatiles compounds were analysed and identified by GC-MS. We confirmed that the observed increase in mono- and sesquiterpene emissions constitutes a common response of grapevine to elicitors in a time-dependent manner. Moreover, beta-ocimene and alpha-farnesene were systematically present within the emitted VOC “bouquet” [2]. Besides, stilbenes resveratrol and piceid were accumulated, but straight correlation with grapevine protection against downy mildew and those emissions terpenes and stilbenes could not be made. VOC emissions were then verified in two French vineyards in Burgundy and Bordeaux, respectively. VOC were analysed after Bastid® treatment of Vitis cvs Chardonnay and Cabernet franc at three phenological stages and using different collecting methods, i.e. passive or dynamic with either SBSE or Tenax sensors. As preliminary results, we observed that VOC emissions remain time-dependent and that terpenes, especially beta-ocimene, are also among the emitted volatiles. We found that the dynamic collect is more sensitive for VOC capture and is required in case of low level of emissions.
Overall these results suggest that VOC analysis could be a relevant method to further study vine response to defence elicitors in the vineyard.

References

[1] Chalal, M., J.B. Winkler, K. Gourrat, S. Trouvelot, M. Adrian, J.P. Schnitzler, F. Jamois and X. Daire, Sesquiterpene volatile organic compounds (VOCs) are markers of elicitation by sulfated laminarine in grapevine, Front Plant Sci, 6 (2015), 350.
[2] Lemaitre-Guillier, C., C. Dufresne, A. Chartier, S. Cluzet, J. Valls, L. Jacquens, A. Douillet, N. Aveline, M. Adrian and X. Daire, VOCs Are Relevant Biomarkers of Elicitor-Induced Defences in Grapevine, Molecules, 26(14) (2021).

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Christelle LEMAITRE-GUILLIER, Agnès CHARTIER, Christelle DUFRESNE, Antonin DOUILLET, Stéphanie CLUZET, Nicolas AVELINE, Xavier DAIRE, Marielle ADRIAN

Presenting author

Christelle LEMAITRE-GUILLIER – Agroécologie, Institut Agro Dijon, CNRS, INRAe, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France

Institut de Chimie Organique et Analytique, ICOA, UMR 7311, Université d’Orléans, rue de Chartres, BP 6759, CEDEX 2, 45067 Orléans, France | Institut de Chimie Organique et Analytique, ICOA, UMR 7311, Université d’Orléans, rue de Chartres, BP 6759, CEDEX 2, 45067 Orléans, France | Institut Français de la Vigne et du Vin (IFV), 33290 Blanquefort, France | Equipe Molécules d’Intérêt Biologique, ISVV, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Faculté des Sciences Pharmaceutiques, Université de Bordeaux, CEDEX, 33882 Villenave d’Orno, France | Institut Français de la Vigne et du Vin (IFV), 33290 Blanquefort, France | Agroécologie, Institut Agro Dijon, CNRS, INRAe, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France | Agroécologie, Institut Agro Dijon, CNRS, INRAe, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France

Contact the author

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Effect of late pruning on yield and wine composition in monastrell wines

Global warming is shifting vine phenology, resulting in a decoupling of phenolic and technological berry ripening. This is altering the balance of fruit traits, which is key relevance to winegrowers

L’effet du climat viticole sur la typicité des vins rouges: caractérisation au niveau des régions viticoles Ibéro-Américaines

Il n’existe presque pas d’études qui caractérisent l’effet du climat viticole sur la typicité des vins en considérant les différents types de climats à l’échelle mondiale. Cette étude fait partie d’un projet CYTED de zonage vitivinicole. L’objectif a été de caractériser l’effet du climat viticole sur la typicité des vins sur une macro région viticole du monde.

Effects of the addition of biochar on the chemical parameters of a vineyard soil in South Tirol, Italy

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).

Effectiveness of carboxymethyl cellulose (CMC) on tartaric stabilization of cava base wine

Recent EU regulations allow the use of carboxymethylcellulose (CMC) as a stabilization agent in wine. We tested CMC in bases for sparkling wines, which must be stabilized before the second fermentation that raises alcohol concentration by 1,5%.