WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Organic volatile compounds as suitable markers of grapevine response to defense elicitors in the vineyard

Organic volatile compounds as suitable markers of grapevine response to defense elicitors in the vineyard

Abstract

In greenhouse, emission of volatile organic compounds (VOC) by grapevine leaves has already been reported in response to the defence elicitor sulfated laminarin (PS3) [1]. In order to check that this response was not specific to PS3, experiments were conducted on Vitis cv Marselan plantlets with several other elicitors of different chemical structures: i.e. Bastid® (COS-OGA), chitosan, Redeli® (phosphonate), Romeo® (yeast extract) and Bion® (acibenzolar-S-methyl). Stir bar sorptive extraction (SBSE) was used as VOC sensor and volatiles compounds were analysed and identified by GC-MS. We confirmed that the observed increase in mono- and sesquiterpene emissions constitutes a common response of grapevine to elicitors in a time-dependent manner. Moreover, beta-ocimene and alpha-farnesene were systematically present within the emitted VOC “bouquet” [2]. Besides, stilbenes resveratrol and piceid were accumulated, but straight correlation with grapevine protection against downy mildew and those emissions terpenes and stilbenes could not be made. VOC emissions were then verified in two French vineyards in Burgundy and Bordeaux, respectively. VOC were analysed after Bastid® treatment of Vitis cvs Chardonnay and Cabernet franc at three phenological stages and using different collecting methods, i.e. passive or dynamic with either SBSE or Tenax sensors. As preliminary results, we observed that VOC emissions remain time-dependent and that terpenes, especially beta-ocimene, are also among the emitted volatiles. We found that the dynamic collect is more sensitive for VOC capture and is required in case of low level of emissions.
Overall these results suggest that VOC analysis could be a relevant method to further study vine response to defence elicitors in the vineyard.

References

[1] Chalal, M., J.B. Winkler, K. Gourrat, S. Trouvelot, M. Adrian, J.P. Schnitzler, F. Jamois and X. Daire, Sesquiterpene volatile organic compounds (VOCs) are markers of elicitation by sulfated laminarine in grapevine, Front Plant Sci, 6 (2015), 350.
[2] Lemaitre-Guillier, C., C. Dufresne, A. Chartier, S. Cluzet, J. Valls, L. Jacquens, A. Douillet, N. Aveline, M. Adrian and X. Daire, VOCs Are Relevant Biomarkers of Elicitor-Induced Defences in Grapevine, Molecules, 26(14) (2021).

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Christelle LEMAITRE-GUILLIER, Agnès CHARTIER, Christelle DUFRESNE, Antonin DOUILLET, Stéphanie CLUZET, Nicolas AVELINE, Xavier DAIRE, Marielle ADRIAN

Presenting author

Christelle LEMAITRE-GUILLIER – Agroécologie, Institut Agro Dijon, CNRS, INRAe, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France

Institut de Chimie Organique et Analytique, ICOA, UMR 7311, Université d’Orléans, rue de Chartres, BP 6759, CEDEX 2, 45067 Orléans, France | Institut de Chimie Organique et Analytique, ICOA, UMR 7311, Université d’Orléans, rue de Chartres, BP 6759, CEDEX 2, 45067 Orléans, France | Institut Français de la Vigne et du Vin (IFV), 33290 Blanquefort, France | Equipe Molécules d’Intérêt Biologique, ISVV, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Faculté des Sciences Pharmaceutiques, Université de Bordeaux, CEDEX, 33882 Villenave d’Orno, France | Institut Français de la Vigne et du Vin (IFV), 33290 Blanquefort, France | Agroécologie, Institut Agro Dijon, CNRS, INRAe, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France | Agroécologie, Institut Agro Dijon, CNRS, INRAe, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France

Contact the author

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Territorio e vino tra immagine e comunicazione

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Classification of “Valpolicella Superiore” wines in relation to aromatic composition: influence of geographical origin, vintage and aging

The Valpolicella appellation, mainly known for Amarone and Ripasso, is experiencing growing interest in Valpolicella Superiore (VS), a lighter red wine aligning with consumer demand. However, anecdotal evidence suggests different stylistic interpretations of VS, potentially causing consumer confusion.

Within-vineyard spatial variation impacts methoxypyrazine accumulation in the rachis of Cabernet-Sauvignon

To investigate the impact of spatial variation in vine vigour on the accumulation of methoxypyrazines in the rachis of Cabernet-Sauvignon. Cabernet-Sauvignon rachis has been shown to contain significantly higher concentrations

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

Mechanical fruit zone leaf removal and deficit irrigation practices interact to affect yield and fruit quality of Cabernet Sauvignon grown in a hot climate

Cabernet Sauvignon is the top red wine cultivar in CA, however, the hot climate in Fresno is not ideal for Cabernet Sauvignon, particularly for berry color development. Fruit-zone leaf removal and irrigation were studied previously to have the significant effect on grape yield performance and berry quality. But the timing of leaf removal and the timing of irrigation are still inconclusive. Also, mechanical fruit-zone leaf removal is relatively new in CA. Our study aims to identify the interactive effect of mechanical fruit-zone leaf removal and irrigation on Cabernet Sauvignon’s yield performance and fruit quality and find the ideal timing of leaf removal and irrigation to maximize the berry color while maintaining the sustainable yield level.