WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Organic volatile compounds as suitable markers of grapevine response to defense elicitors in the vineyard

Organic volatile compounds as suitable markers of grapevine response to defense elicitors in the vineyard

Abstract

In greenhouse, emission of volatile organic compounds (VOC) by grapevine leaves has already been reported in response to the defence elicitor sulfated laminarin (PS3) [1]. In order to check that this response was not specific to PS3, experiments were conducted on Vitis cv Marselan plantlets with several other elicitors of different chemical structures: i.e. Bastid® (COS-OGA), chitosan, Redeli® (phosphonate), Romeo® (yeast extract) and Bion® (acibenzolar-S-methyl). Stir bar sorptive extraction (SBSE) was used as VOC sensor and volatiles compounds were analysed and identified by GC-MS. We confirmed that the observed increase in mono- and sesquiterpene emissions constitutes a common response of grapevine to elicitors in a time-dependent manner. Moreover, beta-ocimene and alpha-farnesene were systematically present within the emitted VOC “bouquet” [2]. Besides, stilbenes resveratrol and piceid were accumulated, but straight correlation with grapevine protection against downy mildew and those emissions terpenes and stilbenes could not be made. VOC emissions were then verified in two French vineyards in Burgundy and Bordeaux, respectively. VOC were analysed after Bastid® treatment of Vitis cvs Chardonnay and Cabernet franc at three phenological stages and using different collecting methods, i.e. passive or dynamic with either SBSE or Tenax sensors. As preliminary results, we observed that VOC emissions remain time-dependent and that terpenes, especially beta-ocimene, are also among the emitted volatiles. We found that the dynamic collect is more sensitive for VOC capture and is required in case of low level of emissions.
Overall these results suggest that VOC analysis could be a relevant method to further study vine response to defence elicitors in the vineyard.

References

[1] Chalal, M., J.B. Winkler, K. Gourrat, S. Trouvelot, M. Adrian, J.P. Schnitzler, F. Jamois and X. Daire, Sesquiterpene volatile organic compounds (VOCs) are markers of elicitation by sulfated laminarine in grapevine, Front Plant Sci, 6 (2015), 350.
[2] Lemaitre-Guillier, C., C. Dufresne, A. Chartier, S. Cluzet, J. Valls, L. Jacquens, A. Douillet, N. Aveline, M. Adrian and X. Daire, VOCs Are Relevant Biomarkers of Elicitor-Induced Defences in Grapevine, Molecules, 26(14) (2021).

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Christelle LEMAITRE-GUILLIER, Agnès CHARTIER, Christelle DUFRESNE, Antonin DOUILLET, Stéphanie CLUZET, Nicolas AVELINE, Xavier DAIRE, Marielle ADRIAN

Presenting author

Christelle LEMAITRE-GUILLIER – Agroécologie, Institut Agro Dijon, CNRS, INRAe, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France

Institut de Chimie Organique et Analytique, ICOA, UMR 7311, Université d’Orléans, rue de Chartres, BP 6759, CEDEX 2, 45067 Orléans, France | Institut de Chimie Organique et Analytique, ICOA, UMR 7311, Université d’Orléans, rue de Chartres, BP 6759, CEDEX 2, 45067 Orléans, France | Institut Français de la Vigne et du Vin (IFV), 33290 Blanquefort, France | Equipe Molécules d’Intérêt Biologique, ISVV, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Faculté des Sciences Pharmaceutiques, Université de Bordeaux, CEDEX, 33882 Villenave d’Orno, France | Institut Français de la Vigne et du Vin (IFV), 33290 Blanquefort, France | Agroécologie, Institut Agro Dijon, CNRS, INRAe, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France | Agroécologie, Institut Agro Dijon, CNRS, INRAe, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France

Contact the author

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Mechanisms responsible for different susceptibility of grapevine varieties to flavescence dorée

Flavescence dorée (FD) is the most serious grapevine yellows disease in Europe. It is caused by phytoplasmas which are transmitted from grapevine to grapevine by the leafhopper Scaphoideus titanus.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Utilización de los estudios detallados y muy detallados de suelos en la microzonificación vitícola

Se justifica la utilización de los mapas de suelos detallados y muy detallados como instrumento fundamental en los estudios de microzonificación.

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].