WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Multispectral fluorescence sensitivity to acidic and polyphenolic changes in Chardonnay wines – The case study of malolactic fermentation

Multispectral fluorescence sensitivity to acidic and polyphenolic changes in Chardonnay wines – The case study of malolactic fermentation

Abstract

In this study, stationary and time-resolved fluorescence signatures were statistically and chemometrically analyzed among three typologies of Chardonnay wines with the objectives to evaluate their sensitivity to acidic and polyphenolic changes. For that purpose, a dataset was built using Excitation Emission Matrices of fluorescence (N=103) decomposed by a Parallel Factor Analysis (PARAFAC) and fluorescence decays (N=22), mathematically fitted, using the conventional exponential modeling and the phasor plot representation. Wine PARAFAC component C4 coupled with its phasor plot g and s values enable the description of malolactic fermentation (MLF) occurrence in Chardonnay wines.  The combination of multispectral fluorescence parameters opens a novel routinely implementable methodology to diagnose fermentative processes.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Maxime, Pacheco, Ambroise, Marin, Jean-Marie, Perrier-Cornet, Christian, Coelho

Presenting author

Maxime, Pacheco – UMR PAM

UMR PAM – Dimacell Imaging Facility | UMR PAM – Dimacell Imaging Facility | UMR PAM – Dimacell Imaging Facility | UMR PAM – Vetagro Sup

Contact the author

Keywords

Malolactic fermantation – Traceability – PARAFAC components – Fluorescence lifetime – Phasor plot

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

First insights on the intra-species diversity in V. berlandieri: environmental adaptation and agronomic performances when used as rootstock

In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy to get adaptation to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently used in vineyards are derived from breeding programs involving very small numbers of parental individuals.

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causing grapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance.

Towards stopping pesticides: survey identification of on-farm solutions

The winegrowing sector consumes a lot of pesticides. Changes in vineyard are necessary in order to reduce or even stop using pesticides, and thus limit their harmful impacts on health and on environment. To answer these issues, the VITAE project (2021-2026) aims at designing pesticide free grapevine systems in France. For that, we take an interest in the vineyards using solutions to strongly reduce chemicals but also biopesticides. We assume that such vineyards exist and that they are implementing solutions that could inspire the design of free- pesticide system.