WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Influence of nitrogen supply on colorimetric parameters of Lugana wines

Influence of nitrogen supply on colorimetric parameters of Lugana wines

Abstract

Color is one of the main qualitative parameters of a wine. As a matter of fact, immediately after having opened a bottle of wine, color, even before aroma and taste, is the first sensorial parameter to be evaluated by the consumer It can change according to various factors depending on the characteristics of the grapes or on the different production and storage processes. This study aims to evaluate the color differences on Lugana wines that are fermented with different yeast and nitrogen supply. Lugana wines were produced with 2021 vintage grapes. Wines were produced with a standard protocol with two different yeasts: Zymaflore Delta e Zymaflore X5 (Laffort, France). Winemaking was carried out in triplicate. During alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made. Four different nitrogen nutrients have been added: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. Subsequently the wines were subjected to accelerated aging at 40°C for 30 days. Color parameters of wines were evaluated thanks Color P100 (Nomasense) colorimeter and expressed in CIELab coordinates. Colorimetric differences were expressed through ∆E parameter. We found significant differences among wines fermented with same yeast and supplemented with different nitrogen supply. No significant difference was attributed to yeast strain. Colorimetric analysis showed that the addition of inorganic nitrogen produced the greatest colorimetric difference with the control wine. The ΔE values of the samples which included the addition of inorganic nitrogen even with the addition of methionine, are significantly different from the control samples which did not foresee any addition of nitrogen to the musts. Furthermore, despite an impact of accelerated aging treatment on colour, relative differences among samples remained constant. This study provided a first insight into the influence of the different nitrogen supply on the color of Lugana wines. The CIELab colorimetric analyzes carried out showed that inorganic nitrogen nutrition leads to Lugana wines of different colors with higher ΔE values.  Further studies should investigate whether these interesting differences should be attributed to nitrogen nutrition alone or other enological variables and extend the tests to other white and red wines. The present work was supported Laffort, France.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Authors

Beatrice, PERINA, Virginie, MOINE, Arnaud, MASSOT, Davide, SLAGHENAUFI, Giovanni, LUZZINI, Maurizio, UGLIANO

Presenting author

Beatrice, PERINA – Department of Biotechnology, University of Verona

Biolaffort, France | Biolaffort, France| Department of Biotechnology, University of Verona | Department of Biotechnology, University of Verona | Department of Biotechnology, University of Verona

Contact the author

Keywords

Lugana wine-White wine-Colour-CIELab-Nitrogen nutrition

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Wine growing regions global climate analysis

We depict the main features of five viticulture agroclimatic indices for 626 wine growing regions within 41 countries.

Influenza di alcuni aspetti ambientali sul contenuto di stilbeni nel vino nell’area della DOC “Sangiovese di Romagna” (Italia)

The ambition of the zonation of the Doc “Sangiovese di Romagna” is described as 25 siti sperimentali, aventi diversa origine geologica, in cui è stato individuato un vigneto omogeneo per la determinazione dei principali parametri viticoli ed enologici. In seguito è stato analizzato il contentto di stilbeni nei vini al fine di indepth il legame con le charatteristiche geopedologiche. The studio describes the positive relationship between the altitude and the content of the trans -piceide nelle province di Forlì and Ravenna and of the trans -resveratrolo a Ravenna. I suoli con maggiore calcare attivo hanno fornito vini più ricchi in stilbeni.

Impact of addition of fumaric acid and glutathion at the end of alcoholic fermentation on Cabernet-Sauvignon wine

Viticulture and oenology face two major challenges today, climate change and the reduction in the use of inputs. Climate change induces low acidity and microbiologically less stable wines

Investigating water stress-related seasonal and spatial patterns and the possible links with juice and wine compositional parameters

The mapping of spatial variability in vineyards offers the potential to implement zonal management strategies with the aim to optimize economic benefits and increase sustainability by managing natural resources, such as water used for irrigation, more optimally. This study characterized the (natural) variability in plant water status in a commercial Cabernet Sauvignon block, using remote sensing techniques, and identified the impact of this variability on the yield, and juice and wine composition. From the field data collected over two growing seasons, we demonstrated that remote sensing techniques are a practical and powerful tool for mapping spatial variability within vineyard blocks.

An effective approach to mitigating ochratoxin A (OTA) levels in wine with minor impact on wine quality

OTA occurrence in wine is well-documented, with higher levels typically found in red (< 0.01-7.63 μg/l), followed by rose (0.01-2.40 μg/l) and white wine (<0.01-1.72 μg/l). Incidence rates are nOTAble, with studies showing OTA present in 53% of 521 red wines, 69% of 98 rose, and 61% of 301 white wines analysed. In europe, wine is estimated to be the second source of OTA intake after cereals. Since 2006, the maximum allowable limit for OTA in wine is 2 μg/l, according to regulation (ec) no. 1881/2006.