WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Influence of nitrogen supply on colorimetric parameters of Lugana wines

Influence of nitrogen supply on colorimetric parameters of Lugana wines

Abstract

Color is one of the main qualitative parameters of a wine. As a matter of fact, immediately after having opened a bottle of wine, color, even before aroma and taste, is the first sensorial parameter to be evaluated by the consumer It can change according to various factors depending on the characteristics of the grapes or on the different production and storage processes. This study aims to evaluate the color differences on Lugana wines that are fermented with different yeast and nitrogen supply. Lugana wines were produced with 2021 vintage grapes. Wines were produced with a standard protocol with two different yeasts: Zymaflore Delta e Zymaflore X5 (Laffort, France). Winemaking was carried out in triplicate. During alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made. Four different nitrogen nutrients have been added: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. Subsequently the wines were subjected to accelerated aging at 40°C for 30 days. Color parameters of wines were evaluated thanks Color P100 (Nomasense) colorimeter and expressed in CIELab coordinates. Colorimetric differences were expressed through ∆E parameter. We found significant differences among wines fermented with same yeast and supplemented with different nitrogen supply. No significant difference was attributed to yeast strain. Colorimetric analysis showed that the addition of inorganic nitrogen produced the greatest colorimetric difference with the control wine. The ΔE values of the samples which included the addition of inorganic nitrogen even with the addition of methionine, are significantly different from the control samples which did not foresee any addition of nitrogen to the musts. Furthermore, despite an impact of accelerated aging treatment on colour, relative differences among samples remained constant. This study provided a first insight into the influence of the different nitrogen supply on the color of Lugana wines. The CIELab colorimetric analyzes carried out showed that inorganic nitrogen nutrition leads to Lugana wines of different colors with higher ΔE values.  Further studies should investigate whether these interesting differences should be attributed to nitrogen nutrition alone or other enological variables and extend the tests to other white and red wines. The present work was supported Laffort, France.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Authors

Beatrice, PERINA, Virginie, MOINE, Arnaud, MASSOT, Davide, SLAGHENAUFI, Giovanni, LUZZINI, Maurizio, UGLIANO

Presenting author

Beatrice, PERINA – Department of Biotechnology, University of Verona

Biolaffort, France | Biolaffort, France| Department of Biotechnology, University of Verona | Department of Biotechnology, University of Verona | Department of Biotechnology, University of Verona

Contact the author

Keywords

Lugana wine-White wine-Colour-CIELab-Nitrogen nutrition

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Context and purpose of the study – Vine development, and hence management, depends on dynamic factors (climate, soil moisture, cultural practices etc.) whose impact can vary depending upon their temporal modalities.

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.

Uncovering the influence of vineyard management on fungal community structure and functional diversity within above-ground compartments

In viticulture, microbial communities – particularly fungi – play a vital role in plant health, disease management, and grape quality.

Correlation between agronomic performance and resistance gene in PIWi varieties in the field

Today’s viticulture faces a considerable challenge dealing with fungal diseases and limitations on the use of plant protection products (PPP) have increased the pressure to find more sustainable alternatives. One strategy may be the development and cultivation of disease-resistant grapevine varieties (PIWI) that could maintain crop productivity and quality while reducing dependence on PPP. In this work a set of 9 PIWI varieties (5 white and 4 red) deploying genes for resistance to powdery and downy mildew were evaluated in two consecutive years in Valdegón, La Rioja, with Tempranillo and Viura as controls. The objective was to correlate agronomic performance and disease incidence with the presence of disease resistance genes in two different seasons: with (2023) and without disease pressure (2022).

Detection of spider mite using artificial intelligence in digital viticulture

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions.