WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Effects of oak barrel aging monitored by 1H-NMR metabolomics

Effects of oak barrel aging monitored by 1H-NMR metabolomics

Abstract

The study of wine evolution during barrel aging is an important aspect of wine quality. Our previous works have shown that wine metabolome monitoring by

1H-NMR approaches allows determining the impact of different winemaking processes including traitements using enzymes or finning agents [1]. In this study, the effects of oak barrel aging were investigated by 1H-NMR metabolomics. Targeted and untargeted 1H-NMR analyses were performed on wines conserved in barrels provided by four different barrel manufacturers. Wine samples were taken after one and twelve months. The collected data were statistically processed by principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and partial orthogonal least squares discriminant analysis (OPLS-DA). Cross permutation tests and ANOVA were performed to validate the results and determine the compounds significantly impacted. The results of chemometrics analyses show the relevance of 1H-NMR metabolomics for studying the impact of oak barrel aging. The targeted analysis allowed us to identify the compounds that evolved during barrel aging. The untargeted analysis proved to be particularly interesting for the study of the specific signature of each barrel makers. 1H-NMR metabolomics is a rapid method that could be used as a decision support tool for winemaking.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Tristan Richard, Gregory Da Costa, Inès Le Mao

Presenting author

Tristan Richard – Université de Bordeaux, Œnologie EA 4577, USC 1366 INRA, INP, ISVV, 210 chemin de Leysotte, 33882 Villenave d’Ornon, France

Contact the author

Keywords

Barrel aging, NMR, metabolomics, chemiometrics

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Climate is a key variable for grapevine development and berry ripening processes. At mesoscale level, climate spatial variations are often determined empirically, as weather station networks are generally not dense enough to account for local climate variations.

Control of microbial development in wines elaborated by carbonic maceration

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

Mapping climate and bioclimatic indices at high-resolution in vineyard regions

Many of the world’s vineyard regions are located in regions of complex terrain, with the result there is significant local climate variation.

The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

Bentonite fining is commonly used in oenology to remove all or parts of white wine proteins, which are known to be involved in haze formation. This fining is effective, but has disadvantages: it is not selective, thus molecules responsible for aroma are also removed, it causes substantial volume losses, and finally it generates wastes. Over the last decades, the knowledge of wine proteins has increased: they have been identified, their structures are known, some of them have been crystallized.

Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Aim: To investigate the effects of different levels of temperature and light intensity on grapevine vegetative growth and bud fruitfulness, which includes the number and size of inflorescence primordia in primary buds.