WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Effects of oak barrel aging monitored by 1H-NMR metabolomics

Effects of oak barrel aging monitored by 1H-NMR metabolomics

Abstract

The study of wine evolution during barrel aging is an important aspect of wine quality. Our previous works have shown that wine metabolome monitoring by

1H-NMR approaches allows determining the impact of different winemaking processes including traitements using enzymes or finning agents [1]. In this study, the effects of oak barrel aging were investigated by 1H-NMR metabolomics. Targeted and untargeted 1H-NMR analyses were performed on wines conserved in barrels provided by four different barrel manufacturers. Wine samples were taken after one and twelve months. The collected data were statistically processed by principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and partial orthogonal least squares discriminant analysis (OPLS-DA). Cross permutation tests and ANOVA were performed to validate the results and determine the compounds significantly impacted. The results of chemometrics analyses show the relevance of 1H-NMR metabolomics for studying the impact of oak barrel aging. The targeted analysis allowed us to identify the compounds that evolved during barrel aging. The untargeted analysis proved to be particularly interesting for the study of the specific signature of each barrel makers. 1H-NMR metabolomics is a rapid method that could be used as a decision support tool for winemaking.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Tristan Richard, Gregory Da Costa, Inès Le Mao

Presenting author

Tristan Richard – Université de Bordeaux, Œnologie EA 4577, USC 1366 INRA, INP, ISVV, 210 chemin de Leysotte, 33882 Villenave d’Ornon, France

Contact the author

Keywords

Barrel aging, NMR, metabolomics, chemiometrics

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Eugenol:  a new marker of hybrid vines? The case study of Baco Blanc in Armagnac

Nowadays, winemaking is dealing with great challenges, notably climate change, disease resistance and low pesticide inputs, desire for more sustainable agricultural productions and permanent changing of consumer preference. Trying to propose practice improvements, scientists are exploring vine hybridization a paradoxically old but still actual way to take up such challenges

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1].

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain.

First step in the preparation of a soil map of the Protected Designation of Origin Valdepeñas (Central, Spain)

This work is a first step to make a map of vineyard soils. The characterization of the soils of the Protected Designation of Origin (D.P.O.) Valdepeñas will allow to group the studied profiles according to their physico-chemical characteristics and the concentrations of most relevant chemical elements. 90 soil profiles were analysed throughout the territory and the soils were sampled and described according to FAO (2006) and classified according to and Soil Taxonomy (2014). All samples were air dried, sieved and some physico-chemical parameters were determined following standard protocols. Also, major and trace elements were analysed by X-ray fluorescence. The statistically study was made using the SPSS program. Trend maps were made using the ArcGIS program. The studied soils have the following average properties: pH, 8.3; electrical conductivity, 0,20 dS/m (low); clay, 18.8% (medium) and CaCO3, 17.1% (high). In the study for the major elements. The major elements of these soils are Si, followed by Ca and Al, with an average content of 203.7 g/kg, 105.5 g/kg and 74.0 g/kg respectively. On the other hand, 27 trace elements have been studied. Of all of them, it can be highlighted the average values of Ba (361.8 mg/kg), Sr (129.3 mg/kg), Rb (83.4 mg/kg), V (74.2 mg/kg) and Ce (70.6 mg/kg). Ba, V and Ce values are higher and the values of Sr and Rb are lower to those found in the literature. The discriminant analysis shows a percentage of grouping of 91%. The content of chemical elements together with the physico-chemical characteristics allows grouping the soils in 4 group according to their order in the classification to Soil Taxonomy; due to the importance of the Calcisols in Castilla-La Mancha, it has been decided to establish them as their own group even if they do not appear in Soil Taxonomy classification.