terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 First insights on the intra-species diversity in V. berlandieri: environmental adaptation and agronomic performances when used as rootstock

First insights on the intra-species diversity in V. berlandieri: environmental adaptation and agronomic performances when used as rootstock

Abstract

Context and purpose of the study – In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy to get adaptation to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently used in vineyards are derived from breeding programs involving very small numbers of parental individuals.

Material and method – In 2005, 78 wild female V. berlandieri plants were ampelographically identified in Texas, USA. The coordinates and elevation of each sampling site were recorded. After growing the plants in field, we selected 286 genotypes. A genotyping by sequencing allowed us to extract 104,378 SNP and to explore the genetic structure of the V. berlandieri population. After grafting, 846 plants were grown in pots and evaluated for root-related traits for two independent years. In our experimental design, four rootstocks (110R, 5BB, SO4, and Börner) widely used in vineyards were added to the study population in order to evaluate the agronomical performances of V. berlandieri wild rootstocks.

Results – Two subpopulations were highlighted and related with variations in elevation, temperature and rainfall of sampling locations. A genome-environment association study highlighted 18 genetic markers associated with environmental variations. Root-related traits have shown a moderate variability (coefficient of variation from 0.15 to 0.45). Two genotypes were detected for their root-related traits performances when compared with commercial rootstocks. Moreover, 8 genetic markers were associated with four root related traits (the root average diameter, the number of small roots, the number of medium roots, and the total number of roots).

Our results shed new light on rootstock genetics and could open up possibilities for introducing greater diversity into genetic improvement programs for grapevine rootstocks in order to adapt grapevine facing climate change.

DOI:

Publication date: June 20, 2023

Issue: GiESCO 2023

Type: Article

Authors

Louis Blois1,2*, Marina de Miguel1, Pierre-François Bert1, Nabil Girollet1, Nathalie Ollat1, Bernadette Rubio1, Vincent Segura3, Kai P. Voss-Fels2, Joachim Schmid2, Elisa Marguerit1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
2Department of Grapevine Breeding, Geisenheim University, Von Lade Str. 1, 65366 Geisenheim, Germany
3AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France

Contact the author*

Keywords

root system architecture, genetics, QTL, water use efficiency, grafting

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Launching the GiESCO guide

Launching the GiESCO guide

The opportunities offered by the climate change

Based on the results of experiments since 2000 at the Institut Agro Montpellier and at INRAE – Pech Rouge, and on the international experience acquired during scientific missions, a global reflection on the opportunities offered by climate change is proposed.

Under-vine cover crops in viticulture: impact of different weed management practices on weed suppression, yield and quality of grapevine cultivar Riesling

The regulation of weeds, particularly in the under-vine area of grapevines, is essential for the maintenance of grape yield and quality.

Rootstocks: how the dark side of the vine can enlight the future?

Global challenges, including adaptation to climate change, decrease of the environmental impacts and maintenance of the economical sustainability shape the future of viticulture.

Unleashing the power of artificial intelligence for viticulture and oenology on earth and space

Implementing artificial intelligence (AI) in viticulture and enology is a rapidly growing field of research with an essential number of potential practical applications.