terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 First insights on the intra-species diversity in V. berlandieri: environmental adaptation and agronomic performances when used as rootstock

First insights on the intra-species diversity in V. berlandieri: environmental adaptation and agronomic performances when used as rootstock

Abstract

Context and purpose of the study – In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy to get adaptation to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently used in vineyards are derived from breeding programs involving very small numbers of parental individuals.

Material and method – In 2005, 78 wild female V. berlandieri plants were ampelographically identified in Texas, USA. The coordinates and elevation of each sampling site were recorded. After growing the plants in field, we selected 286 genotypes. A genotyping by sequencing allowed us to extract 104,378 SNP and to explore the genetic structure of the V. berlandieri population. After grafting, 846 plants were grown in pots and evaluated for root-related traits for two independent years. In our experimental design, four rootstocks (110R, 5BB, SO4, and Börner) widely used in vineyards were added to the study population in order to evaluate the agronomical performances of V. berlandieri wild rootstocks.

Results – Two subpopulations were highlighted and related with variations in elevation, temperature and rainfall of sampling locations. A genome-environment association study highlighted 18 genetic markers associated with environmental variations. Root-related traits have shown a moderate variability (coefficient of variation from 0.15 to 0.45). Two genotypes were detected for their root-related traits performances when compared with commercial rootstocks. Moreover, 8 genetic markers were associated with four root related traits (the root average diameter, the number of small roots, the number of medium roots, and the total number of roots).

Our results shed new light on rootstock genetics and could open up possibilities for introducing greater diversity into genetic improvement programs for grapevine rootstocks in order to adapt grapevine facing climate change.

DOI:

Publication date: June 20, 2023

Issue: GiESCO 2023

Type: Article

Authors

Louis Blois1,2*, Marina de Miguel1, Pierre-François Bert1, Nabil Girollet1, Nathalie Ollat1, Bernadette Rubio1, Vincent Segura3, Kai P. Voss-Fels2, Joachim Schmid2, Elisa Marguerit1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
2Department of Grapevine Breeding, Geisenheim University, Von Lade Str. 1, 65366 Geisenheim, Germany
3AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France

Contact the author*

Keywords

root system architecture, genetics, QTL, water use efficiency, grafting

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Evolution of oak barrels C-glucosidic ellagitannins in model wine solution

Oak wood has a significant impact on the chemical composition of wine, leading to transformations that influence its organoleptic properties, such as its aroma, structure, astringency, bitterness and color. Among the main extractible non-volatile polyphenol compounds released from oak wood, the ellagitannins are found [1].

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].