terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Active thermography to determine grape bud mortality: system design and feasibility

Active thermography to determine grape bud mortality: system design and feasibility

Abstract

Context and purpose of the study – Bud death due to cold damage is a recurrent and major economic issue with Vitis vinifera L. in the Northeastern U.S. winegrowing regions. Primary buds – and sometimes secondary and tertiary buds – are often damaged by fluctuating temperatures in the winter and early spring. To maintain balanced vegetative and reproductive growth of a vine, pruning practices need to be adjusted to account for bud damage. Conventional bud damage assessment requires growers to sample canes/spurs, cut nodes with a razor blade, and then visually assess bud damage. This process is laborious and becomes a major barrier for damage-compensated pruning decision-making, leading to too few live buds per vine and the associated excessive vigor and low yield that result. The overarching goal of this study was to develop an active thermographic system for non-destructive detection of bud damage in the vineyard.

Material and methods – An active thermographic system was developed by integrating a thermal camera, heating stimulation, and sample holder. A custom computer program was developed to synchronize the camera and heating unit to acquire a thermal image sequence of a grapevine cane under a predefined heating stimulation. The heating stimulation included an artificial heating phase using a set of heating lamps and a natural cooling phase. Regions of interest (ROIs) were selected for grape buds to extract thermal responsive curves between damaged and healthy buds.

Results – Results demonstrate that significant differences were observed in thermal responsive curves between damaged and healthy buds for all five representative cultivars used in this study. This lays a solid foundation to further establish classification models to differentiate grape buds with different mortality status effectively.

DOI:

Publication date: June 21, 2023

Issue: GiESCO 2023

Type: Article

Authors

Guangxun ZHAI1, Justine VANDEN HEUVEL 2, Steven LERCH 2, Yu JIANG2*

1School of Electrical and Computer Engineering, Cornell University, USA
2Horticulture Section, School of Integrative Plant Science, Cornell University, USA

Contact the author*

Keywords

pulsed phase thermography, grape bud status, non-destructive detection, grapevine pruning

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Evolution of oak barrels C-glucosidic ellagitannins in model wine solution

Oak wood has a significant impact on the chemical composition of wine, leading to transformations that influence its organoleptic properties, such as its aroma, structure, astringency, bitterness and color. Among the main extractible non-volatile polyphenol compounds released from oak wood, the ellagitannins are found [1].

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].