terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Active thermography to determine grape bud mortality: system design and feasibility

Active thermography to determine grape bud mortality: system design and feasibility

Abstract

Context and purpose of the study – Bud death due to cold damage is a recurrent and major economic issue with Vitis vinifera L. in the Northeastern U.S. winegrowing regions. Primary buds – and sometimes secondary and tertiary buds – are often damaged by fluctuating temperatures in the winter and early spring. To maintain balanced vegetative and reproductive growth of a vine, pruning practices need to be adjusted to account for bud damage. Conventional bud damage assessment requires growers to sample canes/spurs, cut nodes with a razor blade, and then visually assess bud damage. This process is laborious and becomes a major barrier for damage-compensated pruning decision-making, leading to too few live buds per vine and the associated excessive vigor and low yield that result. The overarching goal of this study was to develop an active thermographic system for non-destructive detection of bud damage in the vineyard.

Material and methods – An active thermographic system was developed by integrating a thermal camera, heating stimulation, and sample holder. A custom computer program was developed to synchronize the camera and heating unit to acquire a thermal image sequence of a grapevine cane under a predefined heating stimulation. The heating stimulation included an artificial heating phase using a set of heating lamps and a natural cooling phase. Regions of interest (ROIs) were selected for grape buds to extract thermal responsive curves between damaged and healthy buds.

Results – Results demonstrate that significant differences were observed in thermal responsive curves between damaged and healthy buds for all five representative cultivars used in this study. This lays a solid foundation to further establish classification models to differentiate grape buds with different mortality status effectively.

DOI:

Publication date: June 21, 2023

Issue: GiESCO 2023

Type: Article

Authors

Guangxun ZHAI1, Justine VANDEN HEUVEL 2, Steven LERCH 2, Yu JIANG2*

1School of Electrical and Computer Engineering, Cornell University, USA
2Horticulture Section, School of Integrative Plant Science, Cornell University, USA

Contact the author*

Keywords

pulsed phase thermography, grape bud status, non-destructive detection, grapevine pruning

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Grape and wine quality of terraced local variety Pinela (Vitis vinifera L.) under different water management

Climate change is driving global temperatures up together with a reduction of rainfall, posing a risk to grape yields, wine quality, and threatening the historical viticulture areas of Europe.

Synthesis of scientific research on the application of mechanized grapevine pruning in the Republic of Moldova

One of the basic problems in the viticulture branch is the improvement of perspective technologies for both vine training systems: with vertical standing and with free position of shoots, adapted to the requirements of complex mechanization.

French regulations related to vineyard spraying and examples of devices developed in France and around the world to limit the risks of point-source pollution

Managing pests in vineyards presents a major challenge for winegrowers, who are seeking effective solutions to control diseases and pests.

Analyzing firms’ dynamic capabilities to identify the actions for a sustainable future of the Italian wine sector

The UN Agenda 2030 for Sustainable Development, a global plan for a better future, requires actions.

The evolution of wine tourism: trends, challenges and opportunities for the future

The wine tourism industry has experienced significant transformation over the past years, accelerated by the COVID-19 pandemic.