terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 The informative potential of remote and proximal sensing application on vertical- and overhead-trained vineyards in Northeast Italy

The informative potential of remote and proximal sensing application on vertical- and overhead-trained vineyards in Northeast Italy

Abstract

Context and purpose of the study

The application of remote and proximal sensing in viticulture have been demonstrated as a fast and efficient method to monitor vegetative and physiological parameters of grapevines. The collection of these parameters could be highly valuable to derive information on associated yield and quality traits in the vineyard. However, to leverage the informative potential of the sensing systems, a series of preliminary evaluations should be carried out to standardize working protocols for the specific features of a winegrowing area (e.g., pedoclimate, topography, cultivar, training system). This work aims at evaluating remote and proximal sensing systems for their performance and suitability to provide information on the vegetative, physiological, yield and qualitative aspects of vines and grapes as a function of different training systems in the Valpolicella wine region (Verona, Italy).

Material and methods

Five vineyards in the Valpolicella wine region were investigated for their intra-parcel variability during 2022 growing season. Three vineyards were trained with cane pruning vertical shoot positioning system (Guyot), while the other two were trained with cane pruning overhead system (Pergola). Blocks presenting intra-parcel variability were selected and monitored in each vineyard. The Normal Difference Vegetation Index (NDVI) was calculated using both the data of remote sensors such as the satellite Sentinel-2 and UAV-mounted multispectral camera, and a proximal handheld NDVI device. Further proximal sensor evaluation was carried out employing a handheld thermal camera, which estimates the Crop Water Stress Index (CWSI). The data collected from the sensors was then compared with that of direct measurements on the vines and the berries (e.g., bud fertility, shoot growth kinetics, leaf area, yield, berry skin thickness and technological berry ripening parameters). Multivariate and correlation analyses were applied to determine the relationship between the sensor data and the direct vine and berry measurements and to further evaluate the nature of these relationships as a function of the vine training system.

Results

Multivariate analyses on the whole dataset distinguished the Guyot-trained blocks from the Pergola-trained blocks. Positive correlations emerged between the NDVI values obtained from the satellite images, the UAV images and the proximal NDVI sensor, which were ground-truthed by obtaining high positive correlations with a series of direct measurements, among which the bud fertility, the shoot growth kinetic, the leaf area and the crop yield. The vigor data correlated negatively with quality berry parameters such as the sugar and the polyphenolic content. The strength of the detected relationships varied as a function of the training system, suggesting different informative potential of the tested sensor systems for Guyot and Pergola.

DOI:

Publication date: June 22, 2023

Issue: GiESCO 2023

Type: Article

Authors

Ron SHMULEVIZ*, Marianna FASOLI, Giovanni Battista TORNIELLI

Department of Biotechnology, University of Verona, 37134 Verona, Italy

Contact the author*

Keywords

ground-truthing, proximal and remote sensing, NDVI, CWSI, training system, Valpolicella

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Evolution of oak barrels C-glucosidic ellagitannins in model wine solution

Oak wood has a significant impact on the chemical composition of wine, leading to transformations that influence its organoleptic properties, such as its aroma, structure, astringency, bitterness and color. Among the main extractible non-volatile polyphenol compounds released from oak wood, the ellagitannins are found [1].

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].