terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2023 9 Toward an automatic way to identify red blotch infected vines from hyperspectral images acquired in the field

Toward an automatic way to identify red blotch infected vines from hyperspectral images acquired in the field

Abstract

Context and purpose of the study – Vineyards are affected by different virus diseases, which can lower yield and affect the quality of grapes. Grapevine red blotch disease is one of them, and no curative solution exists. Once infected, a vine must be removed and replaced with a virus-free vine (aka roguing). Screening vineyards to look for symptoms can be time-consuming and needs well-trained experts. To improve this process, we conducted an experiment identifying infected vines using a hyperspectral camera in the field.

Material and methods – We monitored one vineyard in Rutherford, California, at the symptomatic stage in September and October 2020 and in August (pre-symptomatic stage), September and October 2021. More than 700 vines were sampled and analyzed through Polymerase Chain Reaction (PCR). We imaged the same vine canopies using a Senop HSC hyperspectral camera mounted on a tripod and captured 230 bands from the visible (510 nm) to the near-infrared (900 nm). We segmented leaves from the background through a U-Net neural network model and extracted the canopy signal. We tested different machine learning algorithms, Random Forest (RF), Partial Least Square (PLS), Support Vector Machine (SVM), and their multiple-model ensembles, to predict the PCR results (Infected vs. Non-infected). We evaluated and interpreted each model using mean accuracies, confusion matrices, and feature importance computation. We also computed a spectral binning and used recursive feature elimination (RFE) selection. 

Results The stacking ensemble of PLS and SVM models had the highest overall (cross-validated) accuracy of 69.5% for the entire dataset, 61% for the pre-symptomatic, and 74.5% for the symptomatic dataset. In this dataset, the model correctly classified non-infected vines with 83% accuracy and infected vines with 65% accuracy. Absolute values of PLS coefficients were the most important for reflectance at wavelengths between 550-600 nm and 750-800 nm. Concerning the permutation importance of the SVM model, the greatest values were obtained for reflectance around 600 nm, 710 nm, and 830 nm. These wavelengths are related to pigments known to be affected by red blotch. Using the RFE on the binning dataset, the overall accuracy reached 73.3% using 23 bands for the entire dataset and 76% using 30 bands for the symptomatic dataset. This study proves that hyperspectral imaging can help reduce the spread of red blotch by identifying vines that may be infected and could be rogued or molecularly analyzed if higher certainty is desired.

DOI:

Publication date: June 22, 2023

Issue: GiESCO 2023

Type: Article

Authors

Eve LAROCHE-PINEL1,2, Benjamin CORALES1,2, Erica SAWYER1,2,3, Khushwinder SINGH1,2, Kaylah VASQUEZ1,2, Monica COOPER 4, Marc FUCHS 5, Luca BRILLANTE1,2*

 1Department of Viticulture & Enology, California State University Fresno, Fresno, CA, USA
2Viticulture and Enology Research Center, California State University Fresno, Fresno, CA, USA
3Department of Mathematics, California State University Fresno, Fresno, CA, USA
4University of California, Agriculture & Natural Resources, Napa, CA, USA 
5Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY, USA 

Contact the author*

Keywords

disease detection, Grapevine Red Blotch virus, hyperspectral imaging, machine learning, imaging spectroscopy

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Evolution of oak barrels C-glucosidic ellagitannins in model wine solution

Oak wood has a significant impact on the chemical composition of wine, leading to transformations that influence its organoleptic properties, such as its aroma, structure, astringency, bitterness and color. Among the main extractible non-volatile polyphenol compounds released from oak wood, the ellagitannins are found [1].

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

Quantification of newly identified C8 aroma compounds in musts and wines as an analytical tool for the early detection of Fresh Mushroom Off-Flavor

The Fresh Mushroom Off-Flavor (FMOff) is a concerning undesirable aroma in wine specific of certain vintages, characterized by a typical button mushroom aroma. The appearance of this off-flavor is linked to the presence of certain fungus on the grape [1-3].