terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 Diversity of arbuscular mycorrhizal fungi on grapevine roots across an edaphoclimatic gradient

Diversity of arbuscular mycorrhizal fungi on grapevine roots across an edaphoclimatic gradient

Abstract

Challenges associated with climate change, such as soil erosion and drought, have impacted viticulture across wine regions globally in recent decades. As winegrowers struggle to maintain yield and quality standards under these conditions, methods to adapt to and mitigate the impacts of climate change have become more prevalent. One potential mitigation strategy is to enhance symbiotic interaction of grapevine roots with arbuscular mycorrhizal fungi (AMF). The symbiotic association between AMF and grapevine roots can increase nutrient availability, soil health, and water use efficiency by improving soil aggregation, aeration, and permeability, while limiting soil organic matterdegradation. However, little is known whether the benefits of AMF colonization and diversity may be altered by soil type, rootstalk, and scion. The goal of this research is to survey 12 vineyards across an edaphoclimatic gradientextending from the Willamette Valley (Oregon) to Santa Maria (Central California) to identify AMF colonizing communities. This study aims to gain an understanding of how the AMF abundance and diversity are influenced by different soil types, rootstocks, and scions. The AMF communities and diversity were evaluated by amplifying mycorrhizal DNA in grapevine roots. Fungal community abundance was determined by clearing and staining grapevine roots with trypan blue. We hypothesized that AMF diversity and abundance vary across the edaphoclimatic gradient with greater AMF abundance and diversity occurring in California, which whose soil properties (i.e., texture, pH, and plant-available nutrient concentrations) promote grapevine root symbiosis. This research provides valuable insight into AMF communities across diverse wine-growing regions to improve regenerative agriculture management in vineyards. Future research will focus on assessing the influence of regenerative agriculture management practice on AMF colonization and diversity in grapevines.

DOI:

Publication date: July 7, 2023

Issue: GiESCO 2023

Type: Poster

Authors

Amanda RODRIGUEZ1*, Alicia HANS1, Kabir PEAY3, Elisabeth FORRESTEL2, Cristina LAZCANO1

1Department of Land, Air, and Water Resources, University of California-Davis, USA
2Department of Viticulture and Enology, University of California-Davis, USA
3Department of Biology, Stanford University, USA

Contact the author*

Keywords

climate change, AMF, vineyards, rootstock, sustainable viticulture, soil health, microbial terroir

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Launching the GiESCO guide

Launching the GiESCO guide

The opportunities offered by the climate change

Based on the results of experiments since 2000 at the Institut Agro Montpellier and at INRAE – Pech Rouge, and on the international experience acquired during scientific missions, a global reflection on the opportunities offered by climate change is proposed.

Under-vine cover crops in viticulture: impact of different weed management practices on weed suppression, yield and quality of grapevine cultivar Riesling

The regulation of weeds, particularly in the under-vine area of grapevines, is essential for the maintenance of grape yield and quality.

Rootstocks: how the dark side of the vine can enlight the future?

Global challenges, including adaptation to climate change, decrease of the environmental impacts and maintenance of the economical sustainability shape the future of viticulture.

Unleashing the power of artificial intelligence for viticulture and oenology on earth and space

Implementing artificial intelligence (AI) in viticulture and enology is a rapidly growing field of research with an essential number of potential practical applications.