terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 Deciphering grapevine trunk early molecular responses to P. minimum and P. chlamydospora in the presence of a commercial biocontrol agent (Trichoderma atroviride, Vintec®)

Deciphering grapevine trunk early molecular responses to P. minimum and P. chlamydospora in the presence of a commercial biocontrol agent (Trichoderma atroviride, Vintec®)

Abstract

Context and purpose of the study – Esca, one of the main grapevine trunk diseases, is a complex and poorly understood disease. Phaeoacremonium minimum and Phaeomoniella chlamydospora, two of the main pathogens associated to this disease, are thought to be responsible for the first trunk infections. Little is known concerning grapevine trunk defenses during pathogen infection. Therefore, the aim of the study was to characterize the host responses in the grapevine wood to either pathogen alone. In parallel, we also evaluated how these responses were modified by the presence of a commercial biocontrol agent (Trichoderma atroviride, Vintec®).

Material and methods – One year-old canes of Cabernet-Sauvignon clone 15 were divided into two-dormant nodes cuttings, then planted in individual pots and grown in controlled conditions (culture tents, photoperiod 12h/12h, 25°C, 45 % humidity). Cuttings were infected with P. minimum and/or P. chlamydospora, in the absence or presence of Vintec®. Wood samples were collected at 48 hours post infection (hpi) for global transcriptomics analysis (RNA sequencing) and at 3 weeks post infection (wpi) for metabolomics analyses.

Results – Transcriptomic analysis identified specific sets of differentially expressed genes associated with each pathogen. Functional analysis of these genes revealed differences mainly in “Signaling”, “Hormonal signaling” and “Biotic stress response”. In addition, we identified clusters of genes differently regulated in the presence of Vintec® during the infection. Phenylpropanoid metabolism and stilbene biosynthesis-related genes were significantly represented among the genes differently expressed in the presence of Vintec®. Metabolomic analysis highlighted a group of flavonoids and stilbenoids that were overproduced in inoculated plants, compared to non-inoculated plants. Further, metabolomic analysis identified specific metabolites associated with each pathogen. The presence of Vintec® resulted in changes in the production of several metabolites. Five relevant ‘biomarkers’ were chosen for in vitroevaluation of their antifungal activity on P. chlamydospora. The results suggest that these compounds may play a role in limiting the in planta development of the pathogens. Altogether, our results show (i) that the trunk may differently ‘perceive’ and thus respond to P. minimum and P. chlamydospora and (ii) that the Vintec® can modify these responses, in a positive way for the plant. 

DOI:

Publication date: July 5, 2023

Issue: GiESCO 2023

Type: Poster

Authors

Ana ROMEO-OLIVAN1,*, Justine CHERVIN2,3,4, Virginie PUECH-PAGES2,3,4, Sylvie FOURNIER2,3,4, Guillaume MARTI2,3,4, Olivier RODRIGUES2, Thierry LAGRAVERE1, Bernard DUMAS2, Alban JACQUES1
1Unité de Recherche Physiologie, Pathologie, et Génétique Végétales (PPGV), INP PURPAN, Université de Toulouse, Toulouse, France
2Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
3Metatoul-AgromiX platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, LRSV, Université de Toulouse, CNRS, UPS, Toulouse, INP, France
4MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France

Contact the author*

Keywords

Esca, grapevine trunk diseases, plant defense, P. chlamydospora, P. minimum, biocontrol

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Launching the GiESCO guide

Launching the GiESCO guide

The opportunities offered by the climate change

Based on the results of experiments since 2000 at the Institut Agro Montpellier and at INRAE – Pech Rouge, and on the international experience acquired during scientific missions, a global reflection on the opportunities offered by climate change is proposed.

Under-vine cover crops in viticulture: impact of different weed management practices on weed suppression, yield and quality of grapevine cultivar Riesling

The regulation of weeds, particularly in the under-vine area of grapevines, is essential for the maintenance of grape yield and quality.

Rootstocks: how the dark side of the vine can enlight the future?

Global challenges, including adaptation to climate change, decrease of the environmental impacts and maintenance of the economical sustainability shape the future of viticulture.

Unleashing the power of artificial intelligence for viticulture and oenology on earth and space

Implementing artificial intelligence (AI) in viticulture and enology is a rapidly growing field of research with an essential number of potential practical applications.