terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 Response of different grapevine cultivars to water stress using a hydroscape approach

Response of different grapevine cultivars to water stress using a hydroscape approach

Abstract

Context and purpose of the study – Viticulture worldwide is currently affected by the effects of climate change. This set of adverse phenomena lead to a deterioration of functional vine mechanisms, affecting growth, physiology and grape ripening, which may cause severe losses with respect to yield and quality. To prevent water stress and other abiotic factors from severely affecting its physiology, the vine’s response is to reduce transpiration and photosynthesis rates. This response varies depending on the cultivar and its ability to adapt to the environment. The hydroscape method is based on the internal regulation of water status in the plant. It has been recently used to classify grapevine genotypes according to their iso/anisohydric behavior when they are subjected to water stress conditions. The present study was aimed to classify different grapevine genotypes according to their behaviour under drought stress using a hydroscape approach.

Material and methods – The study was conducted from 2020 to 2022 in a multivarietal vineyard. Eight cultivars were selected: Albilla Dorada, Bobal, Macabeo, Mizancho, Moscatel Serrano, Riesling, Tinto Fragoso, and Tinto Velasco. Predawn leaf water potential (ψpd) and stem water  potential (ψstem) were monitored during the summer season. Stomatal conductance, net assimilation and transpiration measurements were recorded. Using measurements of water potentials, hydroscape area and six metrics related with iso/anisohydric behavior were calculated.  

Results – In all cultivars the stress slope was lower than the non-stress slope meaning that when water stress increased, they became more isohydric. Macabeo (1.33) and Albilla Dorada (0.41) exhibited the steepest and least non-stress slope, respectively, whereas for stress slope were Tinto Fragoso (0.42) and Albilla Dorada y Riesling (both 0.02). The largest hydroscape areas were recorded for cultivars Tinto Velasco and Tinto Fragoso (1.26 MPa2 and 1.25 MPa2, respectively). Conversely, Albilla Dorada showed the smallest area (0.95 MPa2), which agrees with a severe control over its stomatal conductance (σ = – 0.57) and thus it can be considered as a cultivar with isohydric behavior. Under non-limiting water availability, the lowest ψstem  value was recorded for Tinto Velasco (– 1.23 MPa) and the highest for Bobal (– 0.67 MPa). Regarding the ψpd at which the transition point is reached, the extreme values were for the varieties Mizancho and Tinto Fragoso (ψpd = – 0.82 MPa and – 0.39 MPa, respectively). There were also differences in the range of ψpd at which the cultivars are able to extract soil water. Albilla Dorada works in a small range (– 1.46 MPa < ψpd < 0 MPa) whereas Tinto Fragoso and Mizancho operate in a higher range (– 2.1 MPa < ψpd < 0 MPa).               

DOI:

Publication date: July 5, 2023

Issue: GiESCO 2023

Type: Poster

Authors

A. Sergio SERRANO, Jesús MARTÍNEZ, Juan Luis CHACÓN*

Regional Institute of Agri-Food and Forestry Research and Development of Castilla-La Mancha (IRIAF), Ctra. Toledo-Albacete s/n, 13700 Tomelloso, Spain

Contact the author*

Keywords

grapevine, hydroscape, stomatal conductance, transpiration, water potential, water use efficiency

Tags

GiESCO | GIESCO 2023 | IVES Conference Series

Citation

Related articles…

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Evolution of oak barrels C-glucosidic ellagitannins in model wine solution

Oak wood has a significant impact on the chemical composition of wine, leading to transformations that influence its organoleptic properties, such as its aroma, structure, astringency, bitterness and color. Among the main extractible non-volatile polyphenol compounds released from oak wood, the ellagitannins are found [1].

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

Quantification of newly identified C8 aroma compounds in musts and wines as an analytical tool for the early detection of Fresh Mushroom Off-Flavor

The Fresh Mushroom Off-Flavor (FMOff) is a concerning undesirable aroma in wine specific of certain vintages, characterized by a typical button mushroom aroma. The appearance of this off-flavor is linked to the presence of certain fungus on the grape [1-3].