terclim by ICS banner
IVES 9 IVES Conference Series 9 GiESCO 9 Riesling as a model to irrigate white wine grape varieties in arid climates

Riesling as a model to irrigate white wine grape varieties in arid climates

Abstract

Context and purpose of the study – Regulated deficit irrigation (RDI) is a common viticultural practice for wine grape production. In addition to the potential improvement of water use efficiency, the adoption of this technique favors smaller canopies with higher levels of fruit sun exposure, enhancing quality attributes associated with red wine grapes such as smaller berries with higher tannins and anthocyanins. However, these quality attributes do not necessarily transfer to white wine grapes. The goal of this project was to assess whether partial rootzone drying (PRD) is more suited than RDI to grow high-end white wine grapes in arid climates, especially aromatic varieties, using Riesling as a model. 

Material and methods – The performance of own-rooted Riesling grapevines in response to RDI and PRD was assessed for three years (2019-2021) in a drip-irrigated vineyard located in the arid (<200 mm annual precipitation) Yakima Valley of Washington, USA. Fully irrigated vines (FULL) were used as a non-stress control. The effect of irrigation on vine water status, water use efficiency, vine vigor, fruit sun exposure, yield, and fruit composition was evaluated. In 2019 and 2021 wines were made to evaluate their phenolic (HPLC) and volatile (GC-MS) composition.

Results – Compared with FULL, PRD saved 20% irrigation water while maintaining canopy growth (shoot length) and vine size (pruning weight) of Riesling vines. Unlike PRD, RDI resulted in smaller canopies, reduced vine size and increased sun exposure of the clusters. Water withholding reduced yield in both treatments, but PRD produced more fruit than RDI in 2020 and 2021. Fruit total soluble solids, pH and titratable acidity did not differ among the three irrigation treatments. GC-MS results for 2019 show that the wines separate by treatment. The analysis of wine phenolics is currently in progress and will determine whether higher levels of sun exposure due to RDI promote the accumulation of compounds related to bitterness or astringency. As high levels of water stress and sun exposure may be counterproductive for aromatic grapes like Riesling, PRD has potential to conserve water and maintain white wine grape quality in arid climates.

DOI:

Publication date: July 5, 2023

Issue: GiESCO 2023

Type: Poster

Authors

Geraldine DIVERRES1*, Danielle FOX2, James HARBERTSON2, Markus KELLER1

1Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA, United States
2Washington State University, Wine Science Center, Richland, WA, United States

Contact the author*

Keywords

partial rootzone drying, regulated deficit irrigation, Riesling, water use efficiency

Tags

Citation

Related articles…

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Evolution of oak barrels C-glucosidic ellagitannins in model wine solution

Oak wood has a significant impact on the chemical composition of wine, leading to transformations that influence its organoleptic properties, such as its aroma, structure, astringency, bitterness and color. Among the main extractible non-volatile polyphenol compounds released from oak wood, the ellagitannins are found [1].

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].