OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Adapting wine production to climate change through the exploration of the diversity of Vitis vinifera cultivars

Adapting wine production to climate change through the exploration of the diversity of Vitis vinifera cultivars

Abstract

Major factors involved in wine quality and typicity are soil type, climatic conditions, plant material (rootstock and cultivar), vineyard management practices and winemaking conditions. All these factors interact and growers optimize the output in terms of yield and quality by adapting plant material and management practices to environmental factors (soil and climate). Hence, plant material is region specific, because growers have selected the optimum rootstocks and varieties for their soils and climatic conditions through a long process of trial and error. Climatic conditions have always changed from year to year (the so-called vintage effect), but since three decades a long term trend is observed in most winegrowing regions towards increased temperatures and summer drought. This evolution raises the question whether region-specific plant material (in particular cultivars) will still be optimum in a warmer and dryer climate. To anticipate potential need for cultivar changes in the Bordeaux area, a trial encompassing 52 cultivars called “VitAdapt” was planted in 2009. Beside all references currently used in Bordeaux, the focus was laid on later ripening cultivars which are currently used in warmer regions. Every cultivar is planted with 5 replicates to take into account possible variations in soil composition. Phenology and grape composition from veraison to ripeness was monitored since 2012 and wines were made by micro vinifications in 2016 and 2017 for 20 cultivars. Wines were tasted by a panel of wine professionals familiar with Bordeaux wines and wines were scored for their typicity in relation to what can be expected for Bordeaux wine. Major varietal aroma compounds were analyzed in the wines.

 

Cultivars varied widely with regard to their precocity. The delay between the most early and latest cultivar is on average 28 days for bud break, 15 days for flowering and 39 days for veraison. A model called Grapevine Flowering Veraison (GFV) was developed and validated on the VitAdapt trial to predict the occurrence of these phenological stages from temperature data. Unsurprisingly, Bordeaux cultivars (and in particular Cabernet-Sauvignon) scored well with regard to Bordeaux wine typicity. Among non-Bordeaux cultivars which showed similar typicity, most were late ripening and had similar phenology, or later phenology, compared to the traditional Bordeaux cultivars. The analysis of key aroma compounds should allow to have a better understanding of the molecular basis of Bordeaux wine typicity and to group cultivars according to their aroma profile. This research will help Bordeaux wine growers to identify cultivars which can potentially be introduced in the Bordeaux cultivar-mix and thus provide a tool to continue to make highly quality, true-to-the-type Bordeaux wines in a changing climate.

DOI:

Publication date: June 3, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Agnes DESTRAC IRVINE1, Cécile Thibon2

(1) UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Villenave d’Ornon, France
(2) Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author

Keywords

climat change, phenology, wine, Bordeaux 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

Rapid measurement of phenolic quality as a useful tool for viticultural zoning

Un des principaux objectifs du zonage viticole est l’individuation des zones plus indiquées à la production de vins de haute qualité en relation aux cépages. Ceperrlant depuis beaucqup d’années, entre les paramètres de qualité du raisin, on n’a pas considéré les substances phénoliques par effet de l!l difficulté d’analyse en temps rapides.

New fungus-resistant grapevine varieties display high and drought-independent thiol precursor levels

The use of varieties tolerant to diseases is a long-term but promising option to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are starting to release a range of new hybrids performing well regarding fungi susceptibility and wine quality.

High-resolution climate modelling for the Cognac region under climate change

Climate change has varied effects across French vineyards, with marked regional differences in temperature shifts. Fine-scale studies highlight significant local climate variability, emphasizing the need for precise regional characterization to adapt vineyard management at the regional scale.