OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Adapting wine production to climate change through the exploration of the diversity of Vitis vinifera cultivars

Adapting wine production to climate change through the exploration of the diversity of Vitis vinifera cultivars

Abstract

Major factors involved in wine quality and typicity are soil type, climatic conditions, plant material (rootstock and cultivar), vineyard management practices and winemaking conditions. All these factors interact and growers optimize the output in terms of yield and quality by adapting plant material and management practices to environmental factors (soil and climate). Hence, plant material is region specific, because growers have selected the optimum rootstocks and varieties for their soils and climatic conditions through a long process of trial and error. Climatic conditions have always changed from year to year (the so-called vintage effect), but since three decades a long term trend is observed in most winegrowing regions towards increased temperatures and summer drought. This evolution raises the question whether region-specific plant material (in particular cultivars) will still be optimum in a warmer and dryer climate. To anticipate potential need for cultivar changes in the Bordeaux area, a trial encompassing 52 cultivars called “VitAdapt” was planted in 2009. Beside all references currently used in Bordeaux, the focus was laid on later ripening cultivars which are currently used in warmer regions. Every cultivar is planted with 5 replicates to take into account possible variations in soil composition. Phenology and grape composition from veraison to ripeness was monitored since 2012 and wines were made by micro vinifications in 2016 and 2017 for 20 cultivars. Wines were tasted by a panel of wine professionals familiar with Bordeaux wines and wines were scored for their typicity in relation to what can be expected for Bordeaux wine. Major varietal aroma compounds were analyzed in the wines.

 

Cultivars varied widely with regard to their precocity. The delay between the most early and latest cultivar is on average 28 days for bud break, 15 days for flowering and 39 days for veraison. A model called Grapevine Flowering Veraison (GFV) was developed and validated on the VitAdapt trial to predict the occurrence of these phenological stages from temperature data. Unsurprisingly, Bordeaux cultivars (and in particular Cabernet-Sauvignon) scored well with regard to Bordeaux wine typicity. Among non-Bordeaux cultivars which showed similar typicity, most were late ripening and had similar phenology, or later phenology, compared to the traditional Bordeaux cultivars. The analysis of key aroma compounds should allow to have a better understanding of the molecular basis of Bordeaux wine typicity and to group cultivars according to their aroma profile. This research will help Bordeaux wine growers to identify cultivars which can potentially be introduced in the Bordeaux cultivar-mix and thus provide a tool to continue to make highly quality, true-to-the-type Bordeaux wines in a changing climate.

DOI:

Publication date: June 3, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Agnes DESTRAC IRVINE1, Cécile Thibon2

(1) UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Villenave d’Ornon, France
(2) Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author

Keywords

climat change, phenology, wine, Bordeaux 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Scalable asymptomatic grapevine leafroll virus complex-3 detection through integrated airborne imaging spectroscopy, autonomous robotics, and cloud computing

The past three decades of terrestrial remote sensing research have delivered unprecedented insights into our fundamental ability to detect, quantify, and differentiate plant disease (Gold 2021). However, much of our fundamental knowledge in this domain has come from studies in non-agricultural systems and until recently, most agricultural studies, when extant, have focused on tree crops where canopy closure and large plot and plant size facilitate stress detection at low spatial resolution. Recent engineering innovations and advancements in constellation architecture design have refined the accuracy and scalability of airborne and spaceborne sensing platforms, enabling us to monitor diverse specialty crops, including grapevine, planted in smaller, spatially varied fields.

Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Le zonage agroclimatique a pour objet de caractériser des lieux ayant des aptitudes distinctes pour la production de la vigne. La province de San Juan en Argentine est l’une des régions vitivinicoles les plus chaudes du pays.

Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Rachis browning is a common abiotic stress that occurs during postharvest storage, leading to a decrease in commercial value of table grapes and resulting in significant economic losses. Its early detection could enable the implementation of preventive strategies. In this report, we show the feasibility of a non-destructive early detection of browning based on Hyper Spectral Imaging (HSI). Furthermore, rachis samples were subjected to transcriptomic analysis to understand putative pathways causing differences in browning within varieties.

Implications of grapevine row orientation in South Africa

Row orientation is a critical long-term viticulture practice, which may have a determining effect on grape and wine quality as well as cost efficiency on a specific terroir selected for cultivation.

Health benefits of wine industry by-products

The total global production of wine in 2021 was estimated at around 250 million hectoliters. The 30% of the total quantity of vinified grapes corresponds to wine by-products that represent nearly 20 million tons, of which 50% corresponds to the European Union. Wine by-products have been used for different purposes, in agriculture, cosmetics, pharmacy, biorefinery, feed, and the food