OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Adapting wine production to climate change through the exploration of the diversity of Vitis vinifera cultivars

Adapting wine production to climate change through the exploration of the diversity of Vitis vinifera cultivars

Abstract

Major factors involved in wine quality and typicity are soil type, climatic conditions, plant material (rootstock and cultivar), vineyard management practices and winemaking conditions. All these factors interact and growers optimize the output in terms of yield and quality by adapting plant material and management practices to environmental factors (soil and climate). Hence, plant material is region specific, because growers have selected the optimum rootstocks and varieties for their soils and climatic conditions through a long process of trial and error. Climatic conditions have always changed from year to year (the so-called vintage effect), but since three decades a long term trend is observed in most winegrowing regions towards increased temperatures and summer drought. This evolution raises the question whether region-specific plant material (in particular cultivars) will still be optimum in a warmer and dryer climate. To anticipate potential need for cultivar changes in the Bordeaux area, a trial encompassing 52 cultivars called “VitAdapt” was planted in 2009. Beside all references currently used in Bordeaux, the focus was laid on later ripening cultivars which are currently used in warmer regions. Every cultivar is planted with 5 replicates to take into account possible variations in soil composition. Phenology and grape composition from veraison to ripeness was monitored since 2012 and wines were made by micro vinifications in 2016 and 2017 for 20 cultivars. Wines were tasted by a panel of wine professionals familiar with Bordeaux wines and wines were scored for their typicity in relation to what can be expected for Bordeaux wine. Major varietal aroma compounds were analyzed in the wines.

 

Cultivars varied widely with regard to their precocity. The delay between the most early and latest cultivar is on average 28 days for bud break, 15 days for flowering and 39 days for veraison. A model called Grapevine Flowering Veraison (GFV) was developed and validated on the VitAdapt trial to predict the occurrence of these phenological stages from temperature data. Unsurprisingly, Bordeaux cultivars (and in particular Cabernet-Sauvignon) scored well with regard to Bordeaux wine typicity. Among non-Bordeaux cultivars which showed similar typicity, most were late ripening and had similar phenology, or later phenology, compared to the traditional Bordeaux cultivars. The analysis of key aroma compounds should allow to have a better understanding of the molecular basis of Bordeaux wine typicity and to group cultivars according to their aroma profile. This research will help Bordeaux wine growers to identify cultivars which can potentially be introduced in the Bordeaux cultivar-mix and thus provide a tool to continue to make highly quality, true-to-the-type Bordeaux wines in a changing climate.

DOI:

Publication date: June 3, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Agnes DESTRAC IRVINE1, Cécile Thibon2

(1) UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Villenave d’Ornon, France
(2) Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author

Keywords

climat change, phenology, wine, Bordeaux 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Il Cabernet di Atina dal 1850 al giorni nostri: un esempio di valorizzazione del territorio

In the province of Frosinone from 1850 they are cultivated in some zones wine grape of French origin like Merlot, Cabernet franc Cabernet sauvignon, Sirah, Pinot noir. The insertion of these varieties was the work of Pasquale Visocchi in the great company of family “Fratelli Visocchi Proprietari” (F. V.P.).

Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Grapevine vegetative multiplication allows the accumulation of spontaneous mutations and increase intra-cultivar genetic diversity that can be exploited to maintain grape wine quality

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.

Recovery and purification of proteins from grape seed byproducts using proteomic and separative techniques

Grape seeds account for around 5% of the weight of the whole grape berry, representing approximately 40%-50% of the solid by-products that the different wine industries generate during the winemaking process.