OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Adapting wine production to climate change through the exploration of the diversity of Vitis vinifera cultivars

Adapting wine production to climate change through the exploration of the diversity of Vitis vinifera cultivars


Major factors involved in wine quality and typicity are soil type, climatic conditions, plant material (rootstock and cultivar), vineyard management practices and winemaking conditions. All these factors interact and growers optimize the output in terms of yield and quality by adapting plant material and management practices to environmental factors (soil and climate). Hence, plant material is region specific, because growers have selected the optimum rootstocks and varieties for their soils and climatic conditions through a long process of trial and error. Climatic conditions have always changed from year to year (the so-called vintage effect), but since three decades a long term trend is observed in most winegrowing regions towards increased temperatures and summer drought. This evolution raises the question whether region-specific plant material (in particular cultivars) will still be optimum in a warmer and dryer climate. To anticipate potential need for cultivar changes in the Bordeaux area, a trial encompassing 52 cultivars called “VitAdapt” was planted in 2009. Beside all references currently used in Bordeaux, the focus was laid on later ripening cultivars which are currently used in warmer regions. Every cultivar is planted with 5 replicates to take into account possible variations in soil composition. Phenology and grape composition from veraison to ripeness was monitored since 2012 and wines were made by micro vinifications in 2016 and 2017 for 20 cultivars. Wines were tasted by a panel of wine professionals familiar with Bordeaux wines and wines were scored for their typicity in relation to what can be expected for Bordeaux wine. Major varietal aroma compounds were analyzed in the wines.


Cultivars varied widely with regard to their precocity. The delay between the most early and latest cultivar is on average 28 days for bud break, 15 days for flowering and 39 days for veraison. A model called Grapevine Flowering Veraison (GFV) was developed and validated on the VitAdapt trial to predict the occurrence of these phenological stages from temperature data. Unsurprisingly, Bordeaux cultivars (and in particular Cabernet-Sauvignon) scored well with regard to Bordeaux wine typicity. Among non-Bordeaux cultivars which showed similar typicity, most were late ripening and had similar phenology, or later phenology, compared to the traditional Bordeaux cultivars. The analysis of key aroma compounds should allow to have a better understanding of the molecular basis of Bordeaux wine typicity and to group cultivars according to their aroma profile. This research will help Bordeaux wine growers to identify cultivars which can potentially be introduced in the Bordeaux cultivar-mix and thus provide a tool to continue to make highly quality, true-to-the-type Bordeaux wines in a changing climate.


Publication date: June 3, 2020

Issue: OENO IVAS 2019

Type: Article


Agnes DESTRAC IRVINE1, Cécile Thibon2

(1) UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Villenave d’Ornon, France
(2) Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author


climat change, phenology, wine, Bordeaux 


IVES Conference Series | OENO IVAS 2019


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.